Solution Problem 1

Eclipses of the Jupiter’s Satellite

a. (Total Point : 1) Assume the orbits of the earth and Jupiter are circles, we can
write the centripetal force = equal gravitational attraction of the Sun.
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where
G = universal gravitational constant
Ms =mass of the Sun

Mg =mass of the Earth

M;  =mass of the Jupiter

R g =radius of the orbit of the Earth
Ve = velocity of the Earth

V; = velocity of Jupiter
Hence
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we get
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b. (Total Point: 1) The relative angular velocity is
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and the relative velocity is
v=wR, =2.36x10%m / day

=27.3x10" km

( 0.5 point )

c. (Total Point: 3 ) The distance of Jupiter to the Earth can be written as follows
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Figure 1: Geometrical relationship to get Ad(t)

The relative error of the above expression is the order of
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The observer saw M begin to emerge from the shadow when his position was at d(?) and
he saw the next emergence when his position was at d(¢ +70)/ Light need time to travel
the distance Ad =d(t+Ty)-d(t) so the observer will get apparent period T instead of the
true period 7.
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(1.0  point)

because w7, = 0.03,sinwt+...,cos@T; =1—...

We can also get this approximation directly from the geometrical relationship from
Figure 1.
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or we can use another method.



From the figure above we get
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d. (Total Point: 2)

;c=velocity of light
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e. Total Point : 2 from
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Hence
C=2.78 x 10° km/s

(1.0 point)



