
Solution and Marking Scheme
Theory

II.   Optical Gyroscope

The light wave moves with speed 
µ
cc =′  in the medium having refractive 

index µ .  Wavelength of light in medium 
µ
λλ =′ , where λ is the wavelength of light 

in vacuum.
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the time difference between +t  and −t :  
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b)   (2 points)   the round-trip optical path difference, L∆ , is given by
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c)  (1 point)        ∆L ≅ 4.5x10-12 m.

d)  (1 point)   the corresponding optical phase difference θ∆   is,
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for N  turns of fiber optic ring,
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The figure shows the triangular ring rotating about the centre o with the angular speed
Ω in the clockwise direction.  Without loosing generality, let‘s first consider the
velocity of light along AC in the CW and CCW direction,

hcRcv Ω±=Ω±=± θcos , where h is constant.
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where τ±  is the time taken for light travelling along AC in the CW and CCW.
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ring.
Therefore, the time difference of light travelling in one complete cycle.
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f) The resonance frequencies associated with ±L corresponding to the effective cavity
lengths seen by CW and CCW propagating beams respectively is,
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where  L±  is the perimeter of the equilateral triangle in  the CW (+) and CCW (-) and
we also use the fact that hΩ << c. Therefore,
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The condition to sustain the laser oscillation (given in the problem),

c
L
m

±
± =ν , m = 1, 2, 3, … integers                (1 point)

L
L

L
Lmcc

L
mc

L
m ∆=∆≈−=−=∆

+−
+− νννν 2                 (1 point)

θ

θ

h

R RΩ

L/3

O

A

B C

RΩ cosθ



the approximation arises from  2LLL ≈−+

where L is the perimeter of the triangular ring.   Hence,
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