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Question Number 1 

Theoretical Question 1:  Particles and Waves 

SOLUTION 
Part A. Inelastic scattering and compositeness of particles 

(a) Let the momentum of the target particle after scattering be 𝑃𝑃�⃗ . The law of conservation of 
linear momentum implies  𝑃𝑃�⃗ = �⃗�𝑝1 − �⃗�𝑝2. The total translational kinetic energies of the 
scattering system before and after scattering are, respectively, 

𝐾𝐾𝑖𝑖 =
𝑝𝑝1

2

2𝑚𝑚
                                                                                                                         

𝐾𝐾f =
𝑝𝑝2

2

2𝑚𝑚
+

(�⃗�𝑝1−�⃗�𝑝2)2

2𝑀𝑀
=
𝑝𝑝2

2

2𝑚𝑚
+

1
2𝑀𝑀

(𝑝𝑝1
2 − 2𝑝𝑝1𝑝𝑝2𝑥𝑥 + 𝑝𝑝2

2).                    (a-1) 

 (i) By definition, we have 𝑄𝑄 = 𝐾𝐾i − 𝐾𝐾f   , or equivalently, 

𝑄𝑄 = 𝐾𝐾i − 𝐾𝐾f =
𝑝𝑝1

2

2𝑚𝑚
−
𝑝𝑝2

2

2𝑚𝑚
−

1
2𝑀𝑀

(𝑝𝑝1
2 − 2𝑝𝑝1𝑝𝑝2𝑥𝑥 + 𝑝𝑝2

2)                                            

=
1

2𝑚𝑚𝑀𝑀
{(𝑀𝑀−𝑚𝑚)𝑝𝑝1

2 − (𝑀𝑀 + 𝑚𝑚)𝑝𝑝2
2 + 2𝑚𝑚𝑝𝑝1𝑝𝑝2𝑥𝑥}                                            

=
𝑀𝑀 + 𝑚𝑚
2𝑚𝑚𝑀𝑀

{
𝑀𝑀 −𝑚𝑚
𝑀𝑀 + 𝑚𝑚

𝑝𝑝1
2 − 𝑝𝑝2

2 +
2𝑚𝑚

𝑀𝑀 + 𝑚𝑚
𝑝𝑝1𝑝𝑝2𝑥𝑥}                                                     

=
𝑀𝑀 + 𝑚𝑚
2𝑚𝑚𝑀𝑀

{
𝑀𝑀 −𝑚𝑚
𝑀𝑀 + 𝑚𝑚

𝑝𝑝1
2 − 𝑝𝑝2𝑥𝑥

2 +
2𝑚𝑚

𝑀𝑀 + 𝑚𝑚
𝑝𝑝1𝑝𝑝2𝑥𝑥 − 𝑝𝑝2𝑦𝑦

2}                                     

=
𝑀𝑀 + 𝑚𝑚
2𝑚𝑚𝑀𝑀

{[
𝑀𝑀 −𝑚𝑚
𝑀𝑀 + 𝑚𝑚

+ (
𝑚𝑚

𝑀𝑀 + 𝑚𝑚
)2]𝑝𝑝1

2 − (𝑝𝑝2𝑥𝑥 −
𝑚𝑚

𝑀𝑀 + 𝑚𝑚
𝑝𝑝1)2 − 𝑝𝑝2𝑦𝑦

2}             

=
𝑀𝑀 + 𝑚𝑚
2𝑚𝑚𝑀𝑀

{(
𝑀𝑀

𝑀𝑀 + 𝑚𝑚
)2𝑝𝑝1

2 − (𝑝𝑝2𝑥𝑥 −
𝑚𝑚

𝑀𝑀 + 𝑚𝑚
𝑝𝑝1)2 − 𝑝𝑝2𝑦𝑦

2}                       (a-2)* 

(ii) If the incident and target particles are both elementary, their internal energies remain the 
same before and after the scattering. By the law of conservation of energy, we must 
have 𝐾𝐾i = 𝐾𝐾f, or  𝑄𝑄 = 0. Thus, we obtain from Eq. (a-2) the following equality 

(
𝑀𝑀

𝑀𝑀 + 𝑚𝑚
)2𝑝𝑝1

2 = (𝑝𝑝2𝑥𝑥 −
𝑚𝑚

𝑀𝑀 + 𝑚𝑚
𝑝𝑝1)2 + 𝑝𝑝2𝑦𝑦

2                                                    

In the  𝑝𝑝2𝑥𝑥 -𝑝𝑝2𝑦𝑦  plane, this represents a circle centered at  (𝑚𝑚𝑝𝑝1/(𝑀𝑀 + 𝑚𝑚), 0) with 
radius  𝑀𝑀𝑝𝑝1/(𝑀𝑀 + 𝑚𝑚). The case  𝑚𝑚 < 𝑀𝑀 is shown in Fig. A1. The values of  𝑝𝑝2𝑥𝑥  at the 
intercepts of the circle with the 𝑝𝑝2𝑥𝑥-axis are 

𝑚𝑚
𝑀𝑀 + 𝑚𝑚

𝑝𝑝1 −
𝑀𝑀

𝑀𝑀 + 𝑚𝑚
𝑝𝑝1 =

𝑚𝑚 −𝑀𝑀
𝑀𝑀 + 𝑚𝑚

𝑝𝑝1   and    
𝑚𝑚

𝑀𝑀 + 𝑚𝑚
𝑝𝑝1 +

𝑀𝑀
𝑀𝑀 + 𝑚𝑚

𝑝𝑝1 = 𝑝𝑝1.      (a-3)*  
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Question Number 1 

 
 
 
 
 
 
 
 
 
 
For a composite target in its ground state before scattering, the law of conservation of 
energy implies 

𝐾𝐾i = 𝐾𝐾f + ∆𝐸𝐸int , 
where ∆𝐸𝐸int ≥ 0

 
is the change in internal energy (or excitation energy) of the target as a 

result of scattering and 𝐾𝐾i  
and 𝐾𝐾f   are given by Eq. (a-1). Thus, in this case, the total 

translational kinetic energy loss is given by 𝑄𝑄 = 𝐾𝐾i − 𝐾𝐾f = ∆𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0. For points on the 
circumference of the circle in Fig. A1, we have 𝑄𝑄 = 0, i.e. elastic scattering. For the 
interior of the circle, we have 𝑄𝑄 > 0, corresponding to inelastic scattering with the target 
in an excited state after scattering. 
The circle and its interior (𝑄𝑄 ≥ 0) are thus allowed by a composite target in its ground 
state before scattering. 

(b) Let 𝐿𝐿 be the angular momentum of the target about an axis through its center of mass and 
normal to the plane of particle motions after scattering. By the law of conservation of 
angular momentum, 

𝐿𝐿 = ±(1
2 𝑑𝑑0 sin 𝜃𝜃)(𝑝𝑝1 − 𝑝𝑝2)                                                 (a-4) 

where the + (or –) sign is implied if the target particle on the left (or right) in Fig. 2 is hit 
by the incident particle. 

(i) After scattering, the target may undergo vibrational and rotational motions. When the 
spring reaches its maximum extension, the length of the spring is 𝑑𝑑m = (1 + 𝑥𝑥)𝑑𝑑0 and the 
moment of inertia of the target rotating about an axis through its center of mass and 
perpendicular to the spring is  𝐼𝐼m = 1

4 𝑀𝑀𝑑𝑑m
2 = 1

4 𝑀𝑀𝑑𝑑0
2(1 + 𝑥𝑥)2. The law of conservation 

of energy implies 

𝑄𝑄 =
1
2
𝑘𝑘(𝑑𝑑m − 𝑑𝑑0)2 +

𝐿𝐿2

2𝐼𝐼m
                                                   (a-5) 

𝑝𝑝1 
𝑝𝑝2𝑥𝑥  

𝑚𝑚
𝑀𝑀+𝑚𝑚

𝑝𝑝1  
𝑚𝑚−𝑀𝑀
𝑀𝑀+𝑚𝑚

𝑝𝑝1  

𝑄𝑄 > 0 

𝑄𝑄 = 0 
𝑄𝑄 < 0 

𝑝𝑝2𝑦𝑦  

Fig. A1 
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Question Number 1 

where the last term represents the rotational kinetic energy of the target at the maximum 
extension of the spring. According to Eq. (a-4), we have 

𝐿𝐿2

2𝐼𝐼m
= (

𝑑𝑑0

𝑑𝑑m
)2 (𝑝𝑝1 − 𝑝𝑝2)2

2𝑀𝑀
sin2 𝜃𝜃 = (

1
1 + 𝑥𝑥

)2 (𝑝𝑝1 − 𝑝𝑝2)2

2𝑀𝑀
sin2 𝜃𝜃         (a-6) 

and therefore 

𝑄𝑄 =
1
2
𝑘𝑘𝑑𝑑0

2𝑥𝑥2 + (
1

1 + 𝑥𝑥
)2 (𝑝𝑝1 − 𝑝𝑝2)2

2𝑀𝑀
sin2 𝜃𝜃 .                                   (a-7)* 

Note that, since 𝑝𝑝2𝑦𝑦 = 0 and  𝑝𝑝2𝑥𝑥 ≡ 𝑝𝑝2, we have from Eq. (a-2) 

𝑄𝑄 = 𝐾𝐾i − 𝐾𝐾f =
𝑀𝑀 + 𝑚𝑚
2𝑚𝑚𝑀𝑀

{(
𝑀𝑀

𝑀𝑀 + 𝑚𝑚
)2𝑝𝑝1

2 − (𝑝𝑝2 −
𝑚𝑚

𝑀𝑀 + 𝑚𝑚
𝑝𝑝1)2}                    

=
(𝑝𝑝1−𝑝𝑝2)

2𝑚𝑚𝑀𝑀
{(𝑀𝑀−𝑚𝑚)𝑝𝑝1 + (𝑀𝑀 + 𝑚𝑚)𝑝𝑝2}                       (a-8) 

A scattering can occur only if 𝑝𝑝1 ≠ 𝑝𝑝2 and 𝑄𝑄 ≥ 0, so from Eq. (a-8), we obtain 

−
𝑀𝑀 −𝑚𝑚
𝑀𝑀 + 𝑚𝑚

𝑝𝑝1 ≤ 𝑝𝑝2 < 𝑝𝑝1                                                                           (a-9)* 

where the equalities hold only if  𝑄𝑄 = 0. 
---------------------------------------------------------------------------------------------------------------- 
*An equation marked with an asterisk gives key answers to the problem. 

(ii) The scattering cross section  𝜎𝜎 is given by the numerical range of  𝛼𝛼 = sin2 𝜃𝜃 . For 
given 𝑝𝑝1 and 𝑝𝑝2, 𝑄𝑄 is a constant by Eq. (a-8), and the value of  𝛼𝛼 can be found from Eq. 
(a-7) to be 

𝛼𝛼 = sin2 𝜃𝜃 =
2𝑀𝑀

(𝑝𝑝1 − 𝑝𝑝2)2 (1 + 𝑥𝑥)2(𝑄𝑄 −
1
2
𝑘𝑘𝑑𝑑0

2𝑥𝑥2) ≥ 0.                                      

In the limit of large 𝑘𝑘, the last inequality can hold only if 𝑥𝑥 is very small. Thus 𝑥𝑥 may be 
neglected in the factor (1 +  𝑥𝑥) and we obtain 

𝛼𝛼 = sin2 𝜃𝜃 ≈
2𝑀𝑀

(𝑝𝑝1 − 𝑝𝑝2)2 (𝑄𝑄 −
1
2
𝑘𝑘𝑑𝑑0

2𝑥𝑥2) = 𝛽𝛽(1 −
1

2𝑄𝑄
𝑘𝑘𝑑𝑑0

2𝑥𝑥2),        (a-10) 

where 

𝛽𝛽 ≡
2𝑀𝑀𝑄𝑄

(𝑝𝑝1 − 𝑝𝑝2)2 =
1

𝑚𝑚(𝑝𝑝1−𝑝𝑝2)
{(𝑀𝑀−𝑚𝑚)𝑝𝑝1 + (𝑀𝑀 + 𝑚𝑚)𝑝𝑝2}                    (a-11) 

is nonnegative and the last equality follows from Eq.(a-8). 
From Eq. (a-10), the minimum value 𝛼𝛼min   of  𝛼𝛼 = sin2 𝜃𝜃 is found to be zero for all  𝑄𝑄 ≥ 0, 
and this occurs when 

𝑥𝑥2 =
2𝑄𝑄
𝑘𝑘𝑑𝑑0

2              (𝛼𝛼min = 0). 
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Moreover, the maximum value 𝛼𝛼max  
 
of  𝛼𝛼 = sin2 𝜃𝜃 is seen to be given by 

𝛼𝛼max = �
𝛽𝛽   if   𝛽𝛽 ≤ 1  and   𝑥𝑥 = 0,                             

1    if   𝛽𝛽 ≥ 1 and  (1 −
1

2𝑄𝑄
𝑘𝑘𝑑𝑑0

2𝑥𝑥2) =
1
𝛽𝛽

.
�                 (a-12) 

Note that, from Eq. (a-11), it follows 

𝛽𝛽 = �
 ≤ 1  if   𝑝𝑝2 ≤ −

𝑀𝑀 − 2𝑚𝑚
𝑀𝑀 + 2𝑚𝑚

𝑝𝑝1,                             

≥ 1  if   𝑝𝑝2 ≥ −
𝑀𝑀 − 2𝑚𝑚
𝑀𝑀 + 2𝑚𝑚

𝑝𝑝1.                            
�                              

Since 𝛼𝛼min = 0, the cross section is given by 𝜎𝜎 = 𝛼𝛼max − 𝛼𝛼min = 𝛼𝛼max  
and, from Eq. 

(a-12), we see that it becomes 1 and is independent of 𝑝𝑝2 when 𝛽𝛽 ≥ 1. Thus the threshold 
value 𝑝𝑝𝑐𝑐  

at which scaling of cross section starts is given by 

𝑝𝑝𝑐𝑐 = −
𝑀𝑀 − 2𝑚𝑚
𝑀𝑀 + 2𝑚𝑚

𝑝𝑝1.                                                                       (a-13)* 

For  𝑝𝑝2 below the threshold value, the cross section is equal to 𝛽𝛽 according to Eq. (a-12) 
and, from Eq. (a-11), we have the following result 

𝜎𝜎 = 𝛽𝛽 =
(𝑀𝑀 −𝑚𝑚)𝑝𝑝1 + (𝑀𝑀 + 𝑚𝑚)𝑝𝑝2

𝑚𝑚(𝑝𝑝1−𝑝𝑝2)
=
𝑀𝑀(𝑝𝑝1+𝑝𝑝2)
𝑚𝑚(𝑝𝑝1−𝑝𝑝2)

− 1.    ( 𝑝𝑝2 ≤ 𝑝𝑝𝑐𝑐)      (a-14) 

Note that, from Eq. (a-9), we have 𝜎𝜎 ≥ 0 for 𝑝𝑝2 ≤ 𝑝𝑝𝑐𝑐  as expected. The cross section 𝜎𝜎 as a 
function of 𝑝𝑝2 is shown in Fig. A2 which evidently shows scaling behavior. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 
−
𝑀𝑀 −𝑚𝑚
𝑀𝑀 + 𝑚𝑚

𝑝𝑝1 = −
𝑝𝑝1

2
 

𝜎𝜎 

1 

𝑝𝑝2 𝑝𝑝𝑐𝑐  𝑝𝑝1 

𝑀𝑀 = 3𝑚𝑚 

Figure A2 
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Part B. Waves on a string 
(c) The initial disturbance will propagate toward the fixed ends. It can be considered as the 

superposition of two waves with wave forms  𝑦𝑦𝑅𝑅(𝑥𝑥 − 𝑐𝑐𝑖𝑖) and  𝑦𝑦𝐿𝐿(𝑥𝑥 + 𝑐𝑐𝑖𝑖) , travelling 
toward the right and the left, respectively. They will both be reflected out of phase at the 
fixed ends. At 𝑖𝑖 = 0, the sum of their displacements must be equal to the initial wave form 
𝑓𝑓(𝑥𝑥). Therefore 

𝑦𝑦𝑅𝑅(𝑥𝑥) + 𝑦𝑦𝐿𝐿(𝑥𝑥) = 𝑓𝑓(𝑥𝑥),     0 ≤ 𝑥𝑥 ≤ 𝐿𝐿                                     (b-1) 
Let 𝑦𝑦′(𝑥𝑥) = 𝑑𝑑𝑦𝑦/𝑑𝑑𝑥𝑥. At 𝑖𝑖 = 0, the string is at rest and the sum of velocities �̇�𝑦R = −𝑐𝑐𝑦𝑦′R  
and ẏL = 𝑐𝑐𝑦𝑦′L of the two waves at 𝑥𝑥 must be zero. Thus we have 

𝑦𝑦′𝑅𝑅(𝑥𝑥) − 𝑦𝑦′𝐿𝐿(𝑥𝑥) = 0, 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿                                    (b-2) 
Integrating Eq. (b-2) with respect to 𝑥𝑥 and combining with Eq. (b-1), we obtain 

 𝑦𝑦𝑅𝑅(𝑥𝑥) = 1
2 (𝑓𝑓(𝑥𝑥) +  𝑦𝑦0 ), 𝑦𝑦𝐿𝐿(𝑥𝑥) = 1

2 (𝑓𝑓(𝑥𝑥) −  𝑦𝑦0) ,   ≤ 𝑥𝑥 ≤ 𝐿𝐿,    (b-3) 

where  𝑦𝑦0 is a constant. (Note that this result may also be obtained by graphical 
construction which takes initial conditions into account by superposing two pulses of 
identical wave form but travelling in opposite directions.) 
Since both waves, after being reflected once at each end and having travelled a 
distance 2𝐿𝐿, return to its original position and state, the period is thus 

𝑇𝑇 =
2𝐿𝐿
𝑐𝑐

.                                                                                     (b-4)* 

[Another way to get the period 𝑇𝑇 ]: 
Because the first harmonics (with the longest period) has λ = 2𝐿𝐿, we have 

𝑇𝑇 =
1
𝑓𝑓

=
λ
𝑐𝑐

=
2𝐿𝐿
𝑐𝑐

.                                                                    (b-4')* 

 
At 𝑖𝑖 = 𝑇𝑇/8, 1/8 of each wave will have been reflected out of phase as shown below, where 
the result for the wave traveling to the right is shown as dashed lines, 
 
 
 
 
 
 
 
 

B A 

𝑐𝑐 𝑐𝑐 

1
2 ℎ 

1
2 𝐿𝐿 1

4 𝐿𝐿 

 

1
4 𝐿𝐿 

 

1
4 ℎ 

1
4 ℎ 

 

1
2 ℎ 
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The displacements of all wave components may be added to give the resultant wave form 
at 𝑖𝑖 = 𝑇𝑇/8, as shown below. 
 
 
 
 
 
 

[Another solution of (c)]: 
Since the evolution of the string is periodic, waves that can simulate it must be periodic in 
space. Furthermore, since the string is released from rest, we can consider the initial 
configuration of the string as a superposition of two saw-tooth waves travelling in 
opposite directions as shown below: 
 
 
 
 
 
 
 
 
 
 
Both A and B will be fixed because two saw-tooth waves tend to move A or B in opposite 
directions. Clearly, the period of motion is the time for the saw-tooth wave to travel the 
distance 2𝐿𝐿. Hence we obtain 

𝑇𝑇 =
2𝐿𝐿
𝑐𝑐

.                                                                           (b-4'')* 

At any time 𝑖𝑖, the shape of the string is determined by adding up the two waves as shown 
below: 
 
 
 
 
 

A B 

𝐷𝐷2 𝐷𝐷1    D 

ℎ 
 A B = 

ℎ/2 

𝑐𝑐 

𝑐𝑐 
C 

D 

E 

F 

A B 

A B 
+ ℎ/2 

𝜃𝜃 𝜃𝜃 
B A 

1
2 ℎ 

1
2 𝐿𝐿 1

4 𝐿𝐿 1
4 𝐿𝐿 

1
2 ℎ tan 𝜃𝜃 = 2ℎ/𝐿𝐿          (b-5)* 



 
Theoretical Competition 
 
25 April 2010  Page 7 of 8 
(Document Released: 14:30, 4/24) 
 __________________________________________________________________________________________ 

Question Number 1 

From the figure above, one sees that between 𝐷𝐷1 and 𝐷𝐷2 , two saw-tooth waves (line 
marked by green and red line) have opposite slopes and hence their sum between 𝐷𝐷1 and 
𝐷𝐷2 is constant with the height being given by ℎ/2 (the height of 𝐷𝐷1 or 𝐷𝐷2). Between 𝐴𝐴 
and 𝐷𝐷1 or 𝐵𝐵 and 𝐷𝐷2 , two saw-tooth waves have the same slope but move in opposite 
direction, hence their sum simply reproduces the original saw-tooth shape. Thus, the shape 
of string at time 𝑖𝑖 is 
 
 
 
with  𝐷𝐷1𝐷𝐷2������� = 2𝑐𝑐𝑖𝑖. For  𝑖𝑖 = 𝑇𝑇/8, 𝐷𝐷1𝐷𝐷2������� = 𝐿𝐿/2 and 

tan 𝜃𝜃 =
2ℎ
𝐿𝐿

.                                                                        (b-5'')* 

(d) To find the total energy, we note that the normal force 𝐹𝐹 which pulls the string sideways at 
the midpoint is 

𝐹𝐹(𝑦𝑦) = 2𝜏𝜏sin𝜃𝜃 = 2𝜏𝜏
2𝑦𝑦
𝐿𝐿

,                                                 (b-6) 

where 𝜏𝜏 is the constant tension (ℎ ≪ 𝐿𝐿) on the string and 𝑦𝑦 is the transverse 
displacement at the midpoint. The work done by 𝐹𝐹 is the total mechanical energy given 
to the string or 

𝐸𝐸 = � 𝐹𝐹(𝑦𝑦)d𝑦𝑦 =
ℎ

0
2𝜏𝜏
ℎ2

𝐿𝐿
= 2𝜇𝜇𝑐𝑐2 ℎ

2

𝐿𝐿
,                           (b-7)* 

where use has been made of 𝑐𝑐 = �𝜏𝜏/𝜇𝜇. 

[Another solution of (d)]: 
Because c = �𝜏𝜏/μ with 𝜏𝜏 being the tension on the string, we have 𝜏𝜏 = 𝜇𝜇𝑐𝑐2. The total 
mechanical energy 𝐸𝐸 at 𝑖𝑖 = 0 is the potential energy 

𝐸𝐸 = 𝑈𝑈 =
1
2
𝜏𝜏 � �

𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥
�

2

𝑑𝑑𝑥𝑥 =
1
2

𝐿𝐿

0
𝜇𝜇𝑐𝑐2 �

ℎ
𝐿𝐿/2

�
2

𝐿𝐿 = 2𝜇𝜇𝑐𝑐2 ℎ
2

𝐿𝐿
               (b-7')* 

Here 𝑦𝑦(𝑥𝑥, 𝑖𝑖) is the displacement of the elastic string. 

[Yet another solution of (d)]: 
We consider a special moment when 𝐶𝐶𝐷𝐷���� and 𝐸𝐸𝐹𝐹���� move into 𝐴𝐴𝐵𝐵���� region completely. At 
this moment, the string is flat so that total mechanical energy is equal to the total kinetic 
energy. Since the velocity for each point on the string is 2𝑐𝑐 tan 𝛼𝛼 (downward) with 
tan 𝛼𝛼 = ℎ/𝐿𝐿, we obtain 

  𝐸𝐸 =
1
2
𝜇𝜇 𝐿𝐿 (2𝑐𝑐 tan 𝛼𝛼)2 = 2𝜇𝜇𝑐𝑐2 ℎ

2

𝐿𝐿
.                                              (b-7'')* 

A B 

𝐷𝐷2 𝐷𝐷1 

𝜃𝜃 
1
2 ℎ 

1
4 𝐿𝐿 
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Question Number 1 

Part C. The expanding universe 
(e) The photons were emitted at 𝑖𝑖e , and are received now at 𝑖𝑖0, so 

𝑎𝑎(𝑖𝑖0)
𝑎𝑎(𝑖𝑖e) =

𝜆𝜆(𝑖𝑖0)
𝜆𝜆(𝑖𝑖e) =

145.8
121.5

≈ 1.200                                            (c-1) 

On the other hand, the Hubble parameter can be derived as 

𝑎𝑎(𝑖𝑖) ∝ exp (𝑏𝑏𝑖𝑖)  → 𝐻𝐻(𝑖𝑖) =
�̇�𝑎(𝑖𝑖)
𝑎𝑎(𝑖𝑖)

= 𝑏𝑏,                                  (c-2) 

which is independent of time. 
Within 𝑑𝑑𝑖𝑖 at some moment 𝑖𝑖 in the past, the photons traveled 𝑐𝑐𝑑𝑑𝑖𝑖, which was 

 
𝑎𝑎(𝑖𝑖e)
𝑎𝑎(𝑖𝑖)

𝑐𝑐𝑑𝑑𝑖𝑖 

at time 𝑖𝑖e due to the cosmic expansion. The photons were emitted at 𝑖𝑖e  so the distance of 
the star from us at that time is 

𝐿𝐿(𝑖𝑖e) = �
𝑎𝑎(𝑖𝑖e)
𝑎𝑎(𝑖𝑖)

𝑐𝑐𝑑𝑑𝑖𝑖
𝑖𝑖0

𝑖𝑖e

= 𝑐𝑐 � exp [𝐻𝐻(𝑖𝑖e − 𝑖𝑖)]𝑑𝑑𝑖𝑖                       
𝑖𝑖0

𝑖𝑖e

 

=
𝑐𝑐
𝐻𝐻

(1 − exp⁡[𝐻𝐻(𝑖𝑖e − 𝑖𝑖0)]).                                         (c-3) 

We already know from Eq. (c-2) that 
exp⁡(𝐻𝐻𝑖𝑖0)
exp⁡(𝐻𝐻𝑖𝑖e)

=
𝑎𝑎(𝑖𝑖0)
𝑎𝑎(𝑖𝑖e) ≈ 1.200,                                                    (c-4) 

thus 

               𝐿𝐿(𝑖𝑖e) =
𝑐𝑐
𝐻𝐻

 �1 −
1

1.200
� ≈ 690 Mpc.                                    (c-5)* 

(f) Due to the cosmic expansion, the above distance is actually longer now: 

                     𝐿𝐿(𝑖𝑖0) =
𝑎𝑎(𝑖𝑖0)
𝑎𝑎(𝑖𝑖e) 𝐿𝐿

(𝑖𝑖e) =
𝑎𝑎(𝑖𝑖0)
𝑎𝑎(𝑖𝑖e)

𝑐𝑐
𝐻𝐻
�1 −

𝑎𝑎(𝑖𝑖e)
𝑎𝑎(𝑖𝑖0)�                        (c-6) 

Thus according to the Hubble Law, we can compute the receding velocity of the star now: 

v(𝑖𝑖0) = 𝐻𝐻𝐿𝐿(𝑖𝑖0) = 𝐻𝐻
𝑎𝑎(𝑖𝑖0)
𝑎𝑎(𝑖𝑖e)

𝑐𝑐
𝐻𝐻
�1 −

𝑎𝑎(𝑖𝑖e)
𝑎𝑎(𝑖𝑖0)� = �

𝑎𝑎(𝑖𝑖0)
𝑎𝑎(𝑖𝑖e) − 1� 𝑐𝑐 ≈ 0.200 𝑐𝑐         (c-7)* 
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