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Theoretical Question 3: Electron and Gas Bubbles in Liquids
SOLUTION

Part A. An Electron Bubble in Liquid Helium
(@) Consider a half of the spherical interface (see Fig. Al below). The condition for its static
equilibrium implies that the total force acting on it must be zero. This implies

R?(P, — Py.) = 2nRo (a-1)
which leads to
20
Pe = Phe + o (a-2)*

Fig. Al

*An equation marked with an asterisk gives key answers to the problem.

According to the de Broglie relation p = h/ A < 1/R, the non-relativistic kinetic energy

Ex is inversely proportional to R?, i.e.
2

__ p° _ const. 3
By the work- energy theorem, we have
const. 2
—P.dV = dE, = (—2) dR = ——EdR (a-4)
R3 R
Thus,
2
—P,(4mR?*dR) = —EEk dR (a-5)
or
1 *
P. = 7R3 Ey (a-6)
[Alternative]

The state of an electron confined in the bubble corresponds to standing waves which
vanish on the interface. According to Part B of Question 1, these are equivalent to the
superposition of two travelling waves moving in opposite directions and continually being
reflected at the interface. They give rise to pressure on the interface and the relation
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between the non-relativistic kinetic energy E\ and the pressure P, for an electron inside a
bubble is similar to that obtained from the kinetic theory of gases. Thus we have
2 E, 2 1
e =3V T R N T R
(b) Let h = h/(2m). From the uncertainty relations, we have

Ey (a-7)*

AxAp,zzh,  AyAp,>=h,  AzAp,>:h (b-1)

From symmetry considerations implied by isotropy, we have
x=y=z=0, p_xzﬁzp_zzo (b-2)
(Ax)? = x? — %> = x? = (Ay)* = (A2)?, (Apx)® =px® = (Bpy)* = (Ap,)*.  (b-3)
where f denotes the mean value of the quantity f. Therefore, we have

3(Ax)? = (AX)? + (Ay)? + (Az)? = x2 + y2 + 22 =12, (b-4)

3(4p.)* = (8p)* + (Ap))* + (8p,)* = p? +p} +pZ =p*  (b5)

Thus we obtain (cf. 18" IPhO)

rZp? = 9(Ax)2(Ap,)? = 2 h? (b-6)

and the kinetic energy must satisfy the following inequality:
E =E>L(9_h2>; (b-7)
KT om T 2m\ 4 )2
The smallest possible Kinetic energy E, of the electron consistent with the uncertainty
relations is thus obtained if the mean-squared-radius 2 is set equal to its largest possible
value of RZ2. This gives

E, =2 Ey, = on” b-8)*
(c) If Ex = E,, it follows from Egs. (a-2), (a-3), and (b-7) that we have
B = ! Ey = on’ —20+P 1
° T 2nR3 " T 16mmRS R | (c-1)
For Py, = 0, this gives the following equilibrium radius of the electron bubble:
1 1
[ 9R? \T 9 x (1.055 x 1073%)2 4
¢ \32mmo)  \32m x9.11 x 10731 x 3.75 x 10~*
= (291674 x 10739)/4 m = 1.31 nm (c-2)*

It might be of some interest to note that, from Eq. (c-1), the corresponding minimum
Kinetic energy is
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o 172
E, = 4nR%c = 3h(%) = 0.100 eV (c-3)

(d) The condition for stable local equilibrium of the electron bubble at radius R is that
when R is increased by a small amount dR > 0, the inward force pushing on the interface
must be greater than the outward force so as to decrease the radius. Thus, from Eq. (c-1),
we obtain

20 9h?
®+dr) " Tema(r + dR)S
By keeping only terms linear in dR after both sides of the inequality are expanded as a
power series and making use of Eq. (c-1) to eliminate Py, We obtain

(1)20> : 9h2
R? ( )16m7rR6

Note that the same inequality is obtained if we consider a small change dR < 0. Using Eq.
(c-1), we may express Eq. (d-2) in terms of Py, as

(d-1)

(d-2)

20 20
=<5 (PHe + ?) (d-3)
or equivalently,
8o
Phe > — (ﬁ) (d-4)*
(e) From Egs. (a-2), (a-6), and (b-8), we have
2 Pe=h=—k 5 P _ o (e-1)
R ® ° 2mR3 T 2mR3®  16mnR>
or equivalently,
pos O 20 )
¢~ 16mmnR> R
The minimum of the right-hand side of the inequality occurs when its derivative vanishes,
i.e.
—45h? 20
TemmRE + 7= 0 (e-3)
or
a5p2 \'*
R=Ra= (32mna> (e-4)
Substituting the last result back into Eq. (e-2), we obtain
P> Py = o> 20 _ (l_ )2_0 _—80 _-160 (2mna)1/4 (e-5y"
°= "™~ 16mnR3 Ry \5 Ry, SRy 5 \45h2
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For Pye < Py, no equilibrium is possible for the electron bubble.

Part B. Single Gas Bubble in Liquid — Collapsing and Radiation

(F) When the bubble’s radius R changes by dR, the volume of the liquid displaced by the
interface is dV = 4mR*dR. But the total volume of the incompressible liquid cannot
change, so the change of the volume at the outer surface of the liquid must also be dV'.
Thus the amount of work done on the liquid is

dW = PdV — PydV = (P — Py)4nR*dR (f-1)*
From Eq.(2), the change in total kinetic energy of the liquid is, in the limitry — oo,
/1 1 :
dE, = d [2np0R4R2 (E - r—)] = 2mpyd(R*R?). (2)
0
Since dE, = dW, we obtain
1 :
Epod(l.!emRZ) = (P — Py)R"dR. (£:3)
with
m = 3, n=2. (f-4)*

(9) The initial gas temperature is T,. According to the ideal gas law, the initial gas pressure
P, = P(R,) is thus given by
PR} = PyR3. (g-1)*
Since the process is adiabatic, the radial dependence of the gas pressure P is
5 3

p=rm=() n=(1) =) n(R) . @

and the temperature T corresponding to the radius R is given by

~ R13 r-1 R, 2 .
(h) From Egs. (3) and (g-2), we have
—~ Py [P; (R\*Y
R3R2) = 0 0 (_) _ -
In terms of § = R/R; and ﬁ = R/Ri, the last equatlon may be rewritten as
P
2) = 3y — -
Zﬁzdﬂ('g ﬁ ) P0R2 (P B~ 1) (h-2)
This may be integrated to give

8 3-3 3 _
o =), %yz_gy‘yz)dy_po ( >ﬁ3(1y—y) : 3 1l
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= () e -+ p2a - )| (h-3)
- 3po Py/ (y — 1) )
Since Q = P,/[(y — 1)Py] and y = 5/3, the last equation leads to
1 .
_ 2 — — —
3P0B* = ~U(B) = 35 (01 = B9 — B2 (1= £)]

—Py(1— 21-p3
-l (4)
Thus we obtain
Py
U= 3_R,2 (h-5)*
(i) The radius of the bubble reaches its minimum value when R = R;8 = 0. Thus, from Eq.

(h-4), we obtain

0=t (1—ﬁ3)=32<1+ b ) (-0
1-pB3 m m 1+8n/)
The last equality shows that g, must be very small in order that Q « 1. Thus
Q~pB2 or By = /Q, ie. Cpn=1 (i-2)*
For R; = 7Ry = 35.0 um, we have, from Eq. (g-1),
Q= A __1 (ﬂ) = §<1)3 = 0.00437. (i-3)
Py —1) (@ —-D\R 2\7
Therefore
B =+/Q = 0.0661, (i-4)
Ry = BmR; = \/QR; = 0.0661 x 35 um = 2.31 pm, (i-5)*
and from Eq. (g-3), the corresponding temperature T,, is

2 2
T, = (ﬁim) T, = (0_0261) x 300K =6.86 x 10*K.  (i-6)*
() From Eq. (h-4), the maximum value of the radial speed u = |B| occurs at = B,
where —U(p) is also at its maximum, i.e. the derivative of U(f) with respect to S must
vanish at g = 8,. Since

16 =gl (=) - (1)) -0
we have
av _ P [ (i_i>_i - 0. G-2)
dpl,_, ~3RZB,[\BS B3 B
Thus , :
Q= % or B =§<%>- (-3)



I
g Question Number 3
Theoretical Competition =

25 April 2010 2010 APhO Page 6 of 6
(Document Released: 14:30, 4/24) TAIPEL TAIWAN

which implies

5(0Q
Pu = §<1+Q
The radius midway between g, (corresponding to maximum speed) and fS,,
(corresponding to zero speed) is given by

) — 0.0852. (-4)*

_ 1 1
B =5 (Bn+pu) =5(0.0661 +0.0852) = 0.0757 G-5)

From Eq. (h-4), the dimensionless radial speed at radius S is

Co -2
i=—p(p)= |--U®

:jw[1 QL P | _ss2ax105 (o)

3poRIB*

gz (1+p)
Thus an estimate of the duration At,, for the radius of the bubble to diminish from g, to
the minimum value S, is
(B, — Bn) (0.0852 — 0.0661)
W  552x10°
(k) Suppose the bubble is a surface radiator with emissivity a. By making use of Eq. (g-3), the
radiant power W, of the bubble at temperature T can be written as a function of g, i.e.

At = =3.45%x107s. G-71)*

W, = T*)4nR? = 4R} T4i k-1
- = a(osgT*)4mR" = 4mR{ aosp 0,86' (k-1)
where o is the Stefan-Boltzmann constant. The power supplied to the bubble is
E=-p% P(Vi)ydv— 4R3Pﬁ k-2)*
- T T\y) ae T TS (2)

The assumption of an adiabatic collapsing of the bubble is deemed reasonable when the
radiant power is less than 20 % of the power supplied to the bubble at 8 = 5. Thus we
have

2 4 1 3 u 0
47TRi aogpg TO F < 47TRi Pi F X 20 % (k-g)
or
PR ., PR (Rp\’ .,_
< 34 = (—) 3% =0.0107 k-4)*
¢ SGSBTO4ﬁ ! 5055 Ty \R Fu (k4)
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