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Question Number 3 

Theoretical Question 3:  Electron and Gas Bubbles in Liquids 

SOLUTION 
Part A. An Electron Bubble in Liquid Helium 

(a) Consider a half of the spherical interface (see Fig. A1 below). The condition for its static 
equilibrium implies that the total force acting on it must be zero. This implies 

𝜋𝜋𝜋𝜋2(𝑃𝑃e − 𝑃𝑃He ) = 2𝜋𝜋𝜋𝜋𝜋𝜋                                                       (a-1) 
which leads to 

𝑃𝑃e = 𝑃𝑃He +
2𝜋𝜋
𝜋𝜋

                                                                        (a-2)* 

 
 
 
 
 
 
 

---------------------------------------------------------------------------------------------------------------- 
*An equation marked with an asterisk gives key answers to the problem. 

 
According to the de Broglie relation 𝑝𝑝 = ℎ/ 𝜆𝜆 ∝ 1/𝜋𝜋, the non-relativistic kinetic energy 
Ek

By the work- energy theorem, we have 

−𝑃𝑃e𝑑𝑑𝑑𝑑 = 𝑑𝑑𝐸𝐸k = (−2)
const.
𝜋𝜋3 𝑑𝑑𝜋𝜋 = －

2
𝜋𝜋
𝐸𝐸k𝑑𝑑𝜋𝜋                   (a-4) 

 is inversely proportional to 𝜋𝜋2, i.e. 

𝐸𝐸k =
𝑝𝑝2

2𝑚𝑚
=

const.
𝜋𝜋2 .                                                                  (a-3) 

Thus, 

−𝑃𝑃𝑒𝑒(4𝜋𝜋𝜋𝜋2𝑑𝑑𝜋𝜋) = −
2
𝜋𝜋
𝐸𝐸k 𝑑𝑑𝜋𝜋                                                    (a-5) 

or 

𝑃𝑃e =
1

2𝜋𝜋𝜋𝜋3 𝐸𝐸k                                                                         (a-6)* 

[Alternative] 
The state of an electron confined in the bubble corresponds to standing waves which 
vanish on the interface. According to Part B of Question 1, these are equivalent to the 
superposition of two travelling waves moving in opposite directions and continually being 
reflected at the interface. They give rise to pressure on the interface and the relation 

𝜋𝜋 𝜋𝜋 

𝑃𝑃e  

𝑃𝑃He  

2𝜋𝜋 

Fig. A1 
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between the non-relativistic kinetic energy 𝐸𝐸k and the pressure 𝑃𝑃e  for an electron inside a 
bubble is similar to that obtained from the kinetic theory of gases. Thus we have 

𝑃𝑃e =
2
3
𝐸𝐸k

𝑑𝑑
=

2
4𝜋𝜋𝜋𝜋3 𝐸𝐸k =

1
2𝜋𝜋𝜋𝜋3 𝐸𝐸k                                                      (a-7)* 

(b) Let ℏ = ℎ/(2𝜋𝜋). From the uncertainty relations, we have 

∆𝑥𝑥 ∆𝑝𝑝𝑥𝑥  ≥ 12 ℏ, ∆𝑦𝑦 ∆𝑝𝑝𝑦𝑦  ≥  12 ℏ, ∆𝑧𝑧 ∆𝑝𝑝𝑧𝑧 ≥ 12 ℏ.                       (b-1) 

From symmetry considerations implied by isotropy, we have 
�̅�𝑥 = 𝑦𝑦� = 𝑧𝑧̅ = 0,     𝑝𝑝𝑥𝑥��� = 𝑝𝑝𝑦𝑦��� = 𝑝𝑝𝑧𝑧��� = 0                                                  (b-2) 

(∆𝑥𝑥)2 = 𝑥𝑥2��� − �̅�𝑥2 = 𝑥𝑥2��� = (∆𝑦𝑦)2 = (∆𝑧𝑧)2,    (∆𝑝𝑝𝑥𝑥)2 = 𝑝𝑝𝑥𝑥2����� = (∆𝑝𝑝𝑦𝑦)2 = (∆𝑝𝑝𝑧𝑧)2.     (b-3) 
where 𝑓𝑓 ̅denotes the mean value of the quantity 𝑓𝑓. Therefore, we have 

3(∆x)2 = (∆x)2 + (∆y)2 + (∆z)2 = x2��� + y2��� + z2� = r2� .             (b-4) 

3(∆𝑝𝑝𝑥𝑥)2 = (∆𝑝𝑝𝑥𝑥)2 + (∆𝑝𝑝𝑦𝑦)2 + (∆𝑝𝑝𝑧𝑧)2 = 𝑝𝑝𝑥𝑥2��� + 𝑝𝑝𝑦𝑦2��� + 𝑝𝑝𝑧𝑧2��� = 𝑝𝑝2���.     (b-5) 

Thus we obtain (cf. 18th 

𝑟𝑟2��� 𝑝𝑝2��� = 9(∆𝑥𝑥)2(∆𝑝𝑝𝑥𝑥)2 ≥ 9
4
ℏ2                                                              (b-6) 

IPhO) 

and the kinetic energy must satisfy the following inequality: 

  𝐸𝐸k =
𝑝𝑝2���

2𝑚𝑚
≥

1
2𝑚𝑚

�
9ℏ2

4
�

1
𝑟𝑟2���                                                                       (b‐7) 

The smallest possible kinetic energy 𝐸𝐸0 of the electron consistent with the uncertainty 
relations is thus obtained if the mean-squared-radius  𝑟𝑟2��� is set equal to its largest possible 
value of  𝜋𝜋2. This gives 

𝐸𝐸k ≥ 𝐸𝐸0 =
9ℏ2

8𝑚𝑚𝜋𝜋2                                                                                     (b‐8)∗ 

(c) If 𝐸𝐸k = 𝐸𝐸0, it follows from Eqs. (a-2), (a-3), and (b-7) that we have 

𝑃𝑃e =
1

2𝜋𝜋𝜋𝜋3 𝐸𝐸0 =
9ℏ2

16𝑚𝑚𝜋𝜋𝜋𝜋5 =
2𝜋𝜋
𝜋𝜋

+ 𝑃𝑃He                                                 (c‐1) 

For 𝑃𝑃He = 0, this gives the following equilibrium radius of the electron bubble: 

𝜋𝜋e = �
9ℏ2

32𝜋𝜋𝑚𝑚𝜋𝜋
�

1
4

= �
9 × (1.055 × 10−34)2

32𝜋𝜋 × 9.11 × 10−31 × 3.75 × 10−4�

1
4

                   

      = (2.91674 × 10−36)1/4 m ≅ 1.31 nm                                        (c‐2)* 
It might be of some interest to note that, from Eq. (c-1), the corresponding minimum 
kinetic energy is 
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𝐸𝐸0 = 4𝜋𝜋𝜋𝜋0
2𝜋𝜋 = 3ℎ � 

𝜋𝜋
2𝜋𝜋𝑚𝑚

 �
1/2

= 0.100 eV                              (c‐3) 

(d) The condition for stable local equilibrium of the electron bubble at radius 𝜋𝜋 is that 
when 𝜋𝜋 is increased by a small amount 𝑑𝑑𝜋𝜋 > 0, the inward force pushing on the interface 
must be greater than the outward force so as to decrease the radius. Thus, from Eq. (c-1), 
we obtain 

2𝜋𝜋
(𝜋𝜋 + 𝑑𝑑𝜋𝜋) + 𝑃𝑃He >

9ℏ2

16𝑚𝑚𝜋𝜋(𝜋𝜋 + 𝑑𝑑𝜋𝜋)5                                             (d‐1) 

By keeping only terms linear in  𝑑𝑑𝜋𝜋 after both sides of the inequality are expanded as a 
power series and making use of Eq. (c-1) to eliminate 𝑃𝑃He, we obtain 

(−1)
2𝜋𝜋
𝜋𝜋2 > (−5)

9ℏ2

16𝑚𝑚𝜋𝜋𝜋𝜋6                                                              (d‐2) 

Note that the same inequality is obtained if we consider a small change 𝑑𝑑𝜋𝜋 < 0. Using Eq. 
(c-1), we may express Eq. (d-2) in terms of  𝑃𝑃He as 

2𝜋𝜋
𝜋𝜋

< 5 �𝑃𝑃He +
2𝜋𝜋
𝜋𝜋
�                                                                      (d‐3) 

or equivalently, 

𝑃𝑃He > −�
8𝜋𝜋
5𝜋𝜋
�                                                                             (d-4)* 

(e) From Eqs. (a-2), (a-6), and (b-8), we have 

2𝜋𝜋
𝜋𝜋

+ 𝑃𝑃He = 𝑃𝑃e =
𝐸𝐸k

2𝜋𝜋𝜋𝜋3 ≥
𝐸𝐸0

2𝜋𝜋𝜋𝜋3 =
9ℏ2

16𝑚𝑚𝜋𝜋𝜋𝜋5                        (e‐1) 

or equivalently, 

𝑃𝑃He ≥
9ℏ2

16𝑚𝑚𝜋𝜋𝜋𝜋5 −  
2𝜋𝜋
𝜋𝜋

                                                               (e‐2) 

The minimum of the right-hand side of the inequality occurs when its derivative vanishes, 
i.e. 

−45ℏ2

16𝑚𝑚𝜋𝜋𝜋𝜋6 +  
2𝜋𝜋
𝜋𝜋2 = 0                                                                    (e‐3) 

or 

𝜋𝜋 = 𝜋𝜋th = �
45ℏ2

32𝑚𝑚𝜋𝜋𝜋𝜋
�

1/4

                                                         (e‐4) 

Substituting the last result back into Eq. (e-2), we obtain 

𝑃𝑃He ≥ 𝑃𝑃th ≡
9ℏ2

16𝑚𝑚𝜋𝜋𝜋𝜋th
5 −  

2𝜋𝜋
𝜋𝜋th

= �
1
5
− 1�

2σ
𝜋𝜋th

=
−8σ
5𝜋𝜋th

 =
−16σ

5
 �

2𝑚𝑚𝜋𝜋𝜋𝜋
45ℏ2 �

1/4

     (e-5)* 
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For PHe < Pth, no equilibrium is possible for the electron bubble. 
 

Part B. Single Gas Bubble in Liquid — Collapsing and Radiation 

(f) When the bubble’s radius 𝜋𝜋 changes by 𝑑𝑑𝜋𝜋, the volume of the liquid displaced by the 
interface is 𝑑𝑑𝑑𝑑 = 4𝜋𝜋𝜋𝜋2𝑑𝑑𝜋𝜋. But the total volume of the incompressible liquid cannot 
change, so the change of the volume at the outer surface of the liquid must also be 𝑑𝑑𝑑𝑑. 
Thus the amount of work done on the liquid is 

𝑑𝑑𝑑𝑑 = 𝑃𝑃𝑑𝑑𝑑𝑑 − 𝑃𝑃0𝑑𝑑𝑑𝑑 = (𝑃𝑃 − 𝑃𝑃0)4𝜋𝜋𝜋𝜋2𝑑𝑑𝜋𝜋                            (f-1)* 
From Eq.(2), the change in total kinetic energy of the liquid is, in the limit 𝑟𝑟0 → ∞, 

𝑑𝑑𝐸𝐸k = 𝑑𝑑 �2𝜋𝜋𝜌𝜌0𝜋𝜋4𝜋𝜋2̇ �
1
𝜋𝜋
−

1
𝑟𝑟0
�� = 2𝜋𝜋𝜌𝜌0𝑑𝑑�𝜋𝜋3𝜋𝜋2̇�.               �f‐2� 

Since 𝑑𝑑𝐸𝐸k = 𝑑𝑑𝑑𝑑, we obtain 
1
2
𝜌𝜌0𝑑𝑑�𝜋𝜋m𝜋𝜋2̇� = (𝑃𝑃 − 𝑃𝑃0)𝜋𝜋n𝑑𝑑𝜋𝜋.                                            �f‐3� 

with 
m = 3, n = 2.                                                                   (f-4)* 

(g) The initial gas temperature is 𝑇𝑇0. According to the ideal gas law, the initial gas pressure 
𝑃𝑃i = 𝑃𝑃(𝜋𝜋i) is thus given by 

     𝑃𝑃i𝜋𝜋i
3 = 𝑃𝑃0𝜋𝜋0

3.                                                                                  (g-1)* 
Since the process is adiabatic, the radial dependence of the gas pressure P is 

𝑃𝑃 ≡ 𝑃𝑃(𝜋𝜋) = �
𝜋𝜋i

3

𝜋𝜋3�
𝛾𝛾

𝑃𝑃i = �
𝜋𝜋i

𝜋𝜋
�

5

𝑃𝑃i = �
𝜋𝜋i

𝜋𝜋
�

5

𝑃𝑃0 �
𝜋𝜋0

𝜋𝜋i
�

3

.         (g-2)* 

and the temperature 𝑇𝑇 corresponding to the radius 𝜋𝜋 is given by 

𝑇𝑇 ≡ 𝑇𝑇(𝜋𝜋) = �
𝜋𝜋i

3

𝜋𝜋3�
(𝛾𝛾−1)

𝑇𝑇0 = �
𝜋𝜋i

𝜋𝜋
�

2

𝑇𝑇0.                                   (g-3)*  

(h) From Eqs. (3) and (g-2), we have 
1

2𝜋𝜋2
𝑑𝑑
𝑑𝑑𝜋𝜋

�𝜋𝜋3𝜋𝜋2̇� =
𝑃𝑃 − 𝑃𝑃0

𝜌𝜌0
=
𝑃𝑃0

𝜌𝜌0
�
𝑃𝑃𝑖𝑖
𝑃𝑃0
�
𝜋𝜋𝑖𝑖
𝜋𝜋
�

3𝛾𝛾

− 1�                     (h-1)  

In terms of  𝛽𝛽 = 𝜋𝜋/𝜋𝜋i and �̇�𝛽 = �̇�𝜋/𝜋𝜋i, the last equation may be rewritten as 
1

2𝛽𝛽2
𝑑𝑑
𝑑𝑑𝛽𝛽

�𝛽𝛽3𝛽𝛽2̇� =
𝑃𝑃0

𝜌𝜌0𝜋𝜋i
2 �
𝑃𝑃i

𝑃𝑃0
𝛽𝛽−3𝛾𝛾 − 1� .                                   (h-2) 

This may be integrated to give 
1
2
𝛽𝛽3𝛽𝛽2̇ =

𝑃𝑃0

𝜌𝜌0
� �

𝑃𝑃i

𝑃𝑃0
𝑦𝑦2−3𝛾𝛾 − 𝑦𝑦2� 𝑑𝑑𝑦𝑦 =

𝑃𝑃0

𝜌𝜌0
��
𝑃𝑃i

𝑃𝑃0
�
𝛽𝛽3−3𝛾𝛾 − 1
3(1 − 𝛾𝛾)

−
𝛽𝛽3 − 1

3
�

𝛽𝛽

1
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          =
𝑃𝑃0

3𝜌𝜌0𝛽𝛽2 �− �
𝑃𝑃i

𝑃𝑃0
�

1
(𝛾𝛾 − 1)

(1 − 𝛽𝛽2) + 𝛽𝛽2(1 − 𝛽𝛽3)� .                      �h‐3� 

Since 𝑄𝑄 ≡ 𝑃𝑃i/[(𝛾𝛾 − 1)𝑃𝑃0] and 𝛾𝛾 = 5/3, the last equation leads to 
1
2
𝜌𝜌0𝛽𝛽2̇ = −𝑈𝑈(𝛽𝛽) ≡

−𝑃𝑃0

3𝜋𝜋i
2𝛽𝛽5 [𝑄𝑄(1 − 𝛽𝛽2) − 𝛽𝛽2(1− 𝛽𝛽3)]                        

=
−𝑃𝑃0(1 − 𝛽𝛽2)

3𝜋𝜋i
2𝛽𝛽5 �𝑄𝑄 −

𝛽𝛽2(1− 𝛽𝛽3)
(1 − 𝛽𝛽2)

� .                                   �h‐4� 

Thus we obtain 

𝜇𝜇 =
𝑃𝑃0

3𝜋𝜋i
2 .                                                                                        (h-5)* 

(i) The radius of the bubble reaches its minimum value when �̇�𝜋 = 𝜋𝜋i�̇�𝛽 = 0. Thus, from Eq. 
(h-4), we obtain 

𝑄𝑄 =
𝛽𝛽m

2

1 − 𝛽𝛽m
2 (1 − 𝛽𝛽m

3 ) = 𝛽𝛽m
2 �1 +

𝛽𝛽m
2

1 + 𝛽𝛽m
� .                             (i-1) 

The last equality shows that 𝛽𝛽m  must be very small in order that 𝑄𝑄 ≪ 1. Thus 
𝑄𝑄 ≈ 𝛽𝛽m

2 ,  or  𝛽𝛽m  ≈  �𝑄𝑄 ,   i.e.  𝐶𝐶m = 1                                      (i-2)* 
For 𝜋𝜋i = 7𝜋𝜋0 = 35.0 μm, we have, from Eq. (g-1), 

𝑄𝑄 =
𝑃𝑃i

𝑃𝑃0(𝛾𝛾 − 1)
=

1
(𝛾𝛾 − 1)

�
𝜋𝜋0

𝜋𝜋i
�

3

=
3
2
�

1
7
�

3

= 0.00437.            (i-3) 

Therefore 
𝛽𝛽m = �𝑄𝑄 = 0.0661,                                                                          (i-4) 
𝜋𝜋m = 𝛽𝛽m𝜋𝜋𝑖𝑖 = �𝑄𝑄𝜋𝜋𝑖𝑖 = 0.0661 × 35 μm = 2.31 μm,             (i-5)* 

and from Eq. (g-3), the corresponding temperature 𝑇𝑇m  is 

𝑇𝑇m = �
1
𝛽𝛽m

�
2

𝑇𝑇0 = �
1

0.0661
�

2

× 300 K = 6.86 × 104 K.        (i-6)* 

(j) From Eq. (h-4), the maximum value of the radial speed  𝑢𝑢 ≡ ��̇�𝛽� occurs at  𝛽𝛽 = 𝛽𝛽𝑢𝑢  
where  −𝑈𝑈(𝛽𝛽) is also at its maximum, i.e. the derivative of  𝑈𝑈(𝛽𝛽) with respect to 𝛽𝛽 must 
vanish at  𝛽𝛽 = 𝛽𝛽𝑢𝑢 . Since 

𝑈𝑈(𝛽𝛽) =
𝑃𝑃0

3𝜋𝜋i
2 �𝑄𝑄 �

1
𝛽𝛽5 −

1
𝛽𝛽3� − �

1
𝛽𝛽3 − 1�� ,                                 (j-1) 

we have 

�𝑑𝑑𝑈𝑈
𝑑𝑑𝛽𝛽

�
𝛽𝛽=𝛽𝛽𝑢𝑢

=
−𝑃𝑃0

3𝜋𝜋i
2𝛽𝛽𝑢𝑢

�𝑄𝑄 �
5
𝛽𝛽𝑢𝑢5

−
3
𝛽𝛽𝑢𝑢3
� −

3
𝛽𝛽𝑢𝑢3
� = 0.                         (j-2) 

Thus 

𝑄𝑄 =
3𝛽𝛽𝑢𝑢2

(5 − 3𝛽𝛽𝑢𝑢2)
,  or    𝛽𝛽𝑢𝑢2 =

5
3
�

𝑄𝑄
1 + 𝑄𝑄

� .                                    (j-3) 
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which implies 

𝛽𝛽𝑢𝑢 = �
5
3
�

𝑄𝑄
1 + 𝑄𝑄

� = 0.0852.                                                         (j-4)* 

The radius midway between 𝛽𝛽𝑢𝑢  (corresponding to maximum speed) and 𝛽𝛽m  
(corresponding to zero speed) is given by 

�̅�𝛽 ≡
1
2

(𝛽𝛽m + 𝛽𝛽𝑢𝑢) ≅
1
2

(0.0661 + 0.0852) = 0.0757                 (j-5) 

From Eq. (h-4), the dimensionless radial speed at radius �̅�𝛽 is 

𝑢𝑢� = −�̇�𝛽��̅�𝛽� = �
−2
𝜌𝜌0

𝑈𝑈(�̅�𝛽)                                                                            

= �
2𝑃𝑃0(1 − �̅�𝛽 2 )

3𝜌𝜌0𝜋𝜋i
2�̅�𝛽 3

�1 −
𝑄𝑄

�̅�𝛽 2
+

�̅�𝛽 2

(1 + �̅�𝛽)
� = 5.52 × 106.        (j-6)* 

Thus an estimate of the duration ∆𝑡𝑡m  for the radius of the bubble to diminish from 𝛽𝛽𝑢𝑢  to 
the minimum value  𝛽𝛽m  is 

∆𝑡𝑡m =
(𝛽𝛽𝑢𝑢 − 𝛽𝛽m )

𝑢𝑢�
=

(0.0852 − 0.0661)
5.52 × 106 = 3.45 × 10−9 s.             (j-7)* 

(k) Suppose the bubble is a surface radiator with emissivity 𝑎𝑎. By making use of Eq. (g-3), the 
radiant power 𝑑𝑑r of the bubble at temperature 𝑇𝑇 can be written as a function of  𝛽𝛽, i.e. 

𝑑𝑑r = 𝑎𝑎(𝜋𝜋SB𝑇𝑇4)4𝜋𝜋𝜋𝜋2 = 4𝜋𝜋𝜋𝜋i
2𝑎𝑎𝜋𝜋SB𝑇𝑇0

4 1
𝛽𝛽6 ,                                      (k-1) 

where 𝜋𝜋SB  4Tis the Stefan-Boltzmann constant. The power supplied to the bubble is 

�̇�𝐸 = −𝑃𝑃
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= −𝑃𝑃i �
𝑑𝑑i

𝑑𝑑
�
𝛾𝛾 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= −4𝜋𝜋𝜋𝜋i
3𝑃𝑃i

�̇�𝛽
𝛽𝛽3                           (k-2)* 

The assumption of an adiabatic collapsing of the bubble is deemed reasonable when the 
radiant power is less than 20 % of the power supplied to the bubble at 𝛽𝛽 = 𝛽𝛽�. Thus we 
have 

4𝜋𝜋𝜋𝜋i
2𝑎𝑎𝜋𝜋SB𝑇𝑇0

4 1
�̅�𝛽6 ≤ 4𝜋𝜋𝜋𝜋i

3𝑃𝑃i
𝑢𝑢�
�̅�𝛽3 × 20 %                                        (k-3) 

or 

𝑎𝑎 ≤
𝑃𝑃i𝜋𝜋i

5𝜋𝜋SB𝑇𝑇0
4 �̅�𝛽

3𝑢𝑢� =
𝑃𝑃0𝜋𝜋i

5𝜋𝜋SB𝑇𝑇0
4 �
𝜋𝜋0

𝜋𝜋i
�

3

�̅�𝛽3𝑢𝑢� = 0.0107                (k-4)* 
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