
Theoretical 1: Solution
Conductors in Conducting Liquid

1. Using Gauss law ∮
E · dA =

q

ε0
. (1)

From symetry we know that the electric field only has radial component. Choose a cylinder
(with a line charge as the axis) as the Gaussian surface, we obtain

E.2πrl =
λl

ε0
.

Simplify to obtain

E = r̂
λ

2πε0r
. (2)

2. The potential is given by

V = −
∫ r

ref
E · dl

= −
∫ r

ref
E.dr

V = − λ

2πε0
ln r +K, (3)

so f(r) = − λ
2πε0

ln r. where K is a constant.

3. The potential from both line charges is a superposition of both potential
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Figure 1: System with two line charges

V = − λ

2πε0
ln r1 +

λ

2πε0
ln r2 (4)

=
λ

2πε0
ln

√
(b− x)2 + y2√
(b+ x)2 + y2

V =
λ

4πε0
ln

(b− x)2 + y2

(b+ x)2 + y2
. (5)
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We can rearrange eq.(5) in to:(
x−

(
1 + β

1 − β

))2

+ y2 = b2

((
1 + β

1 − β

)2

− 1

)
(6)

where β = exp
(
4πε0V
λ

)
. For an arbitrary potential V , Eq. (6) is an equation of circle.

Figure 2: The equipotential surfaces with b = 1, for β = 12.35 (left) and β = 1
12.35 (right)

4. From eq.(5) and eq.(6), we see that for any arbitrary potential V , the equipotential surfaces
of these two equal but opposite lines charge, are cylindrical surfaces. From this observation,
we can choose the specific position for each line charge in both cylinders so that the surface of
each cylinder is an equipotential surface.

Consider the following figure!
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Figure 3: Two line charges with its equipotential surfaces

We would like to find a cylindrical equipotential surface enclose one line charge, let say the −λ
(if we could find the surface, by symmetry, we surely can find the identical one that enclose
the line λ). The potential is given by

V = − λ

2πε0
ln r1 +

λ

2πε0
ln r2

= − λ

4πε0
ln(l21 +R2 − 2l1R cosφ) +

λ

4πε0
ln(l22 +R2 − 2l2R cosφ). (7)

Conductors in Conducting Liquid Page 2 of 6



Theoretical 1: Solution
Conductors in Conducting Liquid

Since the surface of the cylinder has to be the equipotential surface, so the potential should
not depend on φ, i.e. ∂V

∂φ = 0.

− λ

4πε0

2l1R sinφ

l21 +R2 − 2l1R cosφ
+

λ

4πε0

2l2R sinφ

l22 +R2 − 2l2R cosφ
= 0 (8)

l1
l21 +R2 − 2l1R cosφ

=
l2

l22 +R2 − 2l2R cosφ

l21l2 +R2l2 − 2l1l2R cosφ = l1l
2
2 +R2l1 − 2l1l2R cosφ

l1l2(l1 − l2) = R2(l1 − l2)

l1l2 = R2. (9)

From the data in the problem, we have

l1 + l2 = 10a, (10)

l1l2 = 9a2. (11)

Solve this quadratic equation to get
l1 = 5a± 4a. (12)

However, since l1 > l2, we have

l1 = 9a, (13)

l2 = a. (14)

Using this results on eq.(5), we have

V =
λ

4πε0
ln

(4a− x)2 + y2

(4a+ x)2 + y2
. (15)

This is the potential in all region except inside both cylinders. For cylinders at x = −5a, the
potential is constant and equal to

V (x = −2a, y = 0) =
λ

4πε0
ln

(4a+ 2a)2 + 02

(4a− 2a)2 + 02
=

λ

2πε0
ln 3. (16)

For cylinders at x = 5a, the potential is constant and equal to

V (x = 2a, y = 0) =
λ

4πε0
ln

(4a− 2a)2 + 02

(4a+ 2a)2 + 02
= − λ

2πε0
ln 3. (17)

The potential difference between both cylinders are

∆V =
λ

πε0
ln 3 ≡ V0. (18)
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Substituting this results in the potential equation, the potential outside the two cylinders are:

V =
V0

4 ln 3
ln

(4a− x)2 + y2

(4a+ x)2 + y2
. (19)

And the potential inside the cylinders are:

The potential inside the cylinder centered at (x = 5a, y = 0) is V = −V0/2.

The potential inside the cylinder centered at (x = −5a, y = 0) is V = V0/2.

5. From eq.(18), we have

V0 =
q

lπε0
ln 3, (20)

so we get

C =
q

V0
=
lπε0
ln 3

(21)

6. The electric field produces by both cylinders are

Ex =
V0

2 ln 3

(
4a+ x

(4a+ x)2 + y2
+

4a− x

(4a− x)2 + y2

)
. (22)

Ey =
V0

2 ln 3

(
y

(4a+ x)2 + y2
− y

(4a− x)2 + y2

)
. (23)

The volume current density is given by

J = σE (24)

To calculate the total current, we may choose to calculate the current that flow through the
x = 0 plane. On this plane, there is no current in the y direction. The total current is given by

I =

∫
J · dA (25)

=

∫
σExldy

= σl
8aV0
2 ln 3

∫ ∞
∞

dy

(4a)2 + y2

I =
V0πσl

ln 3
(26)

7. The resistance is given by

R =
V0
I

=
ln 3

πσl
(27)

and therefore
RC =

ε0
σ

(28)
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8. Since the system has a high symmetry, we may use Ampere’s law. The magnetic field should
not have any z dependence, since the current has no z dependence.

Figure 4 shows the current density J flow from one cylinder to the other cylinder. Choose an
Ampere loop on a constant x plane in a symmetrical way, so that the first path is pointing in
the positive z direction with constant y coordinate, the second path is pointing to the negative
y direction with constant z coordinate. The third path is pointing to the negative z direction,
but with constant −y coordinate. The fourth path is pointing in the positive y direction with
constant −z coordinate.

Having this path, we need to calculate the current that flow through the loop

I =

∫
J · dA

=

∫
Jxldy

=
V0σl

2 ln 3

∫ y

−y

(
4a+ x

(4a+ x)2 + y2
+

4a− x

(4a− x)2 + y2

)
dy
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Figure 4: The Ampere loop

I =
V0σl

ln 3

(
arctan

y

4a+ x
+ arctan

y

4a− x

)
(29)

Using the Ampere’s law∮
B · dl = µ0I (30)

2Bzl =
µ0V0σl

ln 3

(
arctan

y

4a+ x
+ arctan

y

4a− x

)
Bz = µ0

V0σ

2 ln 3

(
arctan

y

4a+ x
+ arctan

y

4a− x

)
(31)
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therefore

B = ẑ
µ0V0σ

2 ln 3

(
arctan

y

4a+ x
+ arctan

y

4a− x

)
(32)
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