
Theoretical 2: Solution
Relativistic Correction on GPS Satelitte

Part A. Single accelerated particle

1. The equation of motion is given by

F =
d

dt
(γmv) (1)

=
mcβ̇

(1− β2)
3
2

F = γ3ma, (2)

where γ = 1√
1−β2

and β = v
c . So the acceleration is given by

a =
F

γ3m
. (3)

2. Eq.(3) can be rewritten as

c
dβ

dt
=

F

γ3m∫ β

0

dβ

(1− β2)
3
2

=
F

mc

∫ t

0
dt

β√
1− β2

=
Ft

mc
(4)

β =
Ft
mc√

1 +
(
Ft
mc

)2 . (5)

3. Using Eq.(5), we get ∫ x

0
dx =

∫ t

0

Ftdt

m

√
1 +

(
Ft
mc

)2
x =

mc2

F

√1 +

(
Ft

mc

)2

− 1

 . (6)

4. Consider the following systems, a frame S’ is moving with respect to another frame S, with
velocity u in the x direction. If a particle is moving in the S’ frame with velocity v′ also in x
direction, then the particle velocity in the S frame is given by

v =
u+ v′

1 + uv′

c2

. (7)
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If the particles velocity changes with respect to the S’ frame, then the velocity in the S frame
is also change according to

dv =
dv′

1 + uv′

c2

− u+ v′(
1 + uv′

c2

)2 udv′c2

dv =
1

γ2
dv′(

1 + uv′

c2

)2 . (8)

The time in the S’ frame is t′, so the time in the S frame is given by

t = γ

(
t′ +

ux′

c2

)
, (9)

so the time change in the S’ frame will give a time change in the S frame as follow

dt = γdt′
(

1 +
uv′

c2

)
. (10)

The acceleration in the S frame is given by

a =
dv

dt
=
a′

γ3
1(

1 + uv′

c2

)3 . (11)

If the S’ frame is the proper frame, then by definition the velocity v′ = 0. Substitute this to
the last equation, we get

a =
a′

γ3
. (12)

Combining Eq.(3) and Eq.(12), we get

a′ =
F

m
≡ g. (13)

5. Eq.(3) can also be rewritten as

c
dβ

γdτ
=

g

γ3
(14)∫ β

0

dβ

1− β2
=
g

c

∫ τ

0
dτ

ln

(
1√

1− β2
+

β√
1− β2

)
=
gτ

c
(15)√

1 + β

1− β
= e

gτ
c

β
(
e
gτ
c + e−

gτ
c

)
= e

gτ
c − e−

gτ
c

β = tanh
gτ

c
. (16)
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6. The time dilation relation is
dt = γdτ. (17)

From eq.(16), we have

γ =
1√

1− β2
= cosh

gτ

c
. (18)

Combining this equations, we get ∫ t

0
dt =

∫ τ

0
dτ cosh

gτ

c

t =
c

g
sinh

gτ

c
. (19)

Part B. Flight Time

1. When the clock in the origin time is equal to t0, it emits a signal that contain the information
of its time. This signal will arrive at the particle at time t, while the particle position is at
x(t). We have

c(t− t0) = x(t) (20)

t− t0 =
c

g

√1 +

(
gt

c

)2

− 1


t =

t0
2

2− gt0
c

1− gt0
c

. (21)

When the information arrive at the particle, the particle’s clock has a reading according to
eq.(19). So we get

c

g
sinh

gτ

c
=
t0
2

2− gt0
c

1− gt0
c

0 =
1

2

(
gt0
c

)2

− gt0
c

(
1 + sinh

gτ

c

)
+ sinh

gτ

c
gt0
c

= 1 + sinh
gτ

c
± cosh

gτ

c
. (22)

Using initial condition t = 0 when τ = 0, we choose the negative sign

gt0
c

= 1 + sinh
gτ

c
− cosh

gτ

c

t0 =
c

g

(
1− e−

gτ
c

)
. (23)

As τ →∞, t0 = c
g . So the clock reading will freeze at this value.
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2. When the particles clock has a reading τ0, its position is given by eq.(6), and the time t0 is
given by eq.(19). Combining this two equation, we get

x =
c2

g

(√
1 + sinh2 gτ0

c
− 1

)
. (24)

The particle’s clock reading is then sent to the observer at the origin. The total time needed
for the information to arrive is given by

t =
c

g
sinh

gτ0
c

+
x

c
(25)

=
c

g

(
sinh

gτ0
c

+ cosh
gτ0
c
− 1
)

t =
c

g

(
e
gτ0
c − 1

)
(26)

τ0 =
c

g
ln

(
gt

c
+ 1

)
. (27)

The time will not freeze.

Part C. Minkowski Diagram

1. The figure below show the setting of the problem.

The line AB represents the stick with proper length equal L in the S frame.

The length AB is equal to
√

1−β2

1+β2L in the S’ frame.

The stick length in the S’ frame is represented by the line AC

!
!
!
!
!
!
!
!
!
!
!
!
3. The!position!of!the!particle!is!given!by!eq.!(5).!!
!
!
!
!
!
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!
Part%C.%Flight%Time%
1. When!the!clock!in!the!origin!shows!time!t0,!it!emits!a!signal!that!contain!the!

information!of! its!clock.!This!signal!will!arrive!at! the!particle!at! time!t,!and!
the!particle!position!is!at!x(t).!We!have!

!

c(t − t0 ) = x(t)

t − t0 =
c
g

1+ gt
c

⎛
⎝⎜

⎞
⎠⎟
2

−1
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
!!

Simplify!this!to!get!

! t = t0
2

2 − gt0
c

1− gt0
c

!! (9)!

When!the!information!arrive!at!the!particle,!the!particle’s!clock!has!a!reading!
according!to!eq.!(8)!

!!

!!

x#

ct#

x’#

ct’#

!!

!!

A!
B!

C!

Figure 1: Minkowski Diagram

AC =
AB

cos θ
=
√

1− β2L. (28)

2. The position of the particle is given by eq.(6).

Relativistic Correction on GPS Satelitte Page 4 of 10



Theoretical 2: Solution
Relativistic Correction on GPS Satelitte

!

!" !!
!

!!!

! !!
!

!!!

!′!!"′!

Figure 2: Minkowski Diagram

Part D. Two Accelerated Particles

1. τB = τA.

2. From the diagram, we have

tan θ = β =
ct2 − ct1
x2 − x1

. (29)

Using eq.(6), and eq.(19) along with the initial condition, we get

x1 =
c2

g

(
cosh

gτ1
c
− 1
)
, (30)

x2 =
c2

g

(
cosh

gτ2
c
− 1
)

+ L. (31)

Using eq.(16), eq.(19), eq.(30) and eq.(31), we obtain

tanh
gτ1
c

=
c
(
c
g sinh gτ2

c −
c
g sinh gτ1

c

)
L+ c2

g

(
cosh gτ2

c − 1
)
− c2

g

(
cosh gτ1

c − 1
)

=
sinh gτ2

c − sinh gτ1
c

gL
c2

+ cosh gτ2
c − cosh gτ1

c

gL

c2
sinh

gτ1
c

= sinh
gτ2
c

cosh
gτ1
c
− cosh

gτ2
c

sinh
gτ1
c

gL

c2
sinh

gτ1
c

= sinh
g

c
(τ2 − τ1) . (32)

So C1 = gL
c2

.
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! x1 =
c2

g
cosh gτ1

c
−1⎛

⎝⎜
⎞
⎠⎟ !! (13)! !!

A!similar!relation!is!applied!to!the!second!particle!
! x2 =

c2

g
cosh gτ 2

c
−1⎛

⎝⎜
⎞
⎠⎟ + L !! (14)!

Using!eq.!(6)!and!(8)!in!eq(12),!we!obtain!

!

tanh gτ1
c

=
c c
g
sinh gτ 2

c
− c
g
sinh gτ1

c
⎛
⎝⎜

⎞
⎠⎟

L + c
2

g
cosh gτ 2

c
−1⎛

⎝⎜
⎞
⎠⎟ −

c2

g
cosh gτ1

c
−1⎛

⎝⎜
⎞
⎠⎟

=
sinh gτ 2

c
− sinh gτ1

c
gL
c2

+ cosh gτ 2
c

− cosh gτ1
c

gL
c2
sinh gτ1

c
= sinh gτ 2

c
cosh gτ1

c
− cosh gτ 2

c
sinh gτ1

c

!!

Using!identity!relation,!the!last!equation!is!simply!to!
! gL

c2
sinh gτ1

c
= sinh g

c
τ 2 −τ1( ) !! (15)!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
3. From!the!length!contraction,!we!have!

!
L ' = x2 − x1

γ 1
d ′L
dτ1

= dx2
dτ 2

dτ 2
dτ1

− dx1
dτ1

⎛
⎝⎜

⎞
⎠⎟
1
γ 1

− x2 − x1
γ 1

2
dγ 1
dτ1

!!

x1! x2!

t1!

t2!

!!

!!

!!

Figure 3: Minkowski Diagram for two particles

3. From the length contraction, we have

L′ =
x2 − x1
γ1

(33)

dL′

dτ1
=

(
dx2
dτ2

dτ2
dτ1
− dx1
dτ1

)
1

γ1
− x2 − x1

γ21

dγ1
dτ1

. (34)

Take derivative of eq.(30), eq.(31) and eq.(32), we get

dx1
dτ1

= c sinh
gτ1
c
, (35)

dx2
dτ2

= c sinh
gτ2
c
, (36)

gL

c2
cosh

gτ1
c

= cosh
g

c
(τ2 − τ1)

(
dτ2
dτ1
− 1

)
. (37)

The last equation can be rearrange to get

dτ2
dτ1

=
gL
c2

cosh gτ1
c

cosh g
c (τ2 − τ1)

+ 1. (38)
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From eq.(29), we have

x2 − x1 =
c(t2 − t1)

β1
=

c

tanh gτ1
c

(
c

g
sinh

gτ2
c
− c

g
sinh

gτ1
c

)
. (39)

Combining all these equations, we get

dL1

dτ1
=

(
c sinh

gτ2
c

gL
c2

cosh gτ1
c

cosh g
c (τ2 − τ1)

+ c sinh
gτ2
c
− c sinh

gτ1
c

)
1

cosh gτ1
c

− c2

g

(
sinh

gτ2
c
− sinh

gτ1
c

) 1

tanh gτ1
c

1

cosh2 gτ1
c

g

c
sinh

gτ1
c

dL1

dτ1
=
gL

c

sinh gτ2
c

cosh g
c (τ2 − τ1)

. (40)

So C2 = gL
c .

Part E. Uniformly Accelerated Frame

1. Distance from a certain point xp according to the particle’s frame is

L′ =
x− xp
γ

(41)

L′ =

c2

g1

(
cosh g1τ

c − 1
)
− xp

cosh g1τ
c

L′ =
c2

g1
−

c2

g1
+ xp

cosh g1τ
c

. (42)

For L′ equal constant, we need xp = − c2

g1
.

2. First method: If the distance in the S’ frame is constant = L, then in the S frame the length
is

Ls = L

√
1 + β2

1− β2
. (43)

So the position of the second particle is

x2 = x1 + Ls cos θ (44)

=
c2

g1

√1 +

(
g1t1
c

)2

− 1

+ L

√
1 +

(
g1t1
c

)

x2 =

(
c2

g1
+ L

)√
1 +

(
g1t1
c

)2

− c2

g1
. (45)
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! !

! x2 =
c2

g1
+ L

⎛
⎝⎜

⎞
⎠⎟
1+ g1t1

c
⎛
⎝⎜

⎞
⎠⎟
2

− c
2

g1
!! (17)!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
the!time!of!the!second!particle!is!

!

ct2 = ct1 + LS sinθ

= ct1 +

L

g1t1
c

1+ g1t1
c

⎛
⎝⎜

⎞
⎠⎟
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1

1+ g1t1
c

⎛
⎝⎜

⎞
⎠⎟
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

!!

! ct2 = ct1 1+
g1L
c2

⎛
⎝⎜

⎞
⎠⎟ !! (18)!

Substitute!eq.(18)!to!eq.(17)!to!get!

!!
L"

!
x1! x2!

t1!

t2!

!

Figure 4: Minkowski Diagram for two particles

The time of the second particle is

ct2 = ct1 + Ls sin θ (46)

= ct1 + L

√
1 + β2

1− β2
β√

1 + β2

ct2 = t1

(
c+

g1L

c

)
. (47)

Substitute eq.(47) to eq.(45) to get

x2 =

(
c2

g1
+ L

)√√√√1 +

(
g1
c

t2

1 + g1L
c2

)2

− c2

g1

x2 =

(
c2

g1
+ L

)√√√√1 +

(
g1

1 + g1L
c2

t2
c

)2

− c2

g1
. (48)

From the last equation, we can identify

g2 ≡
g1

1 + g1L
c2

. (49)
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As for confirmation, we can subsitute this relation to the second particle position to get

x2 =
c2

g2

√
1 +

(
g2t2
c

)2

− c2

g1
. (50)

Second method: In this method, we will choose g2 such that the special point like the one
descirbe in the question 1 is exactly the same as the similar point for the proper acceleration
g1.
For first particle, we have xp1g1 = c2

For second particle, we have (L+ xp1)g2 = c2

Combining this two equations, we get

g2 =
c2

L+ c2

g1

g2 =
g1

1 + g1L
c2

. (51)

3. The relation between the time in the two particles is given by eq.(47)

t2 = t1

(
1 +

g1L

c2

)
c2

g2
sinh

g2τ2
c

=
c2

g1
sinh

g1τ1
c

(
1 +

g1L

c2

)
sinh

g2τ2
c

= sinh
g1τ1
c

g2τ2 = g1τ1 (52)

dτ2
dτ1

=
g1
g2

= 1 +
g1L

c2
. (53)

Part F. Correction for GPS

1. From Newtons Law

GMm

r2
= mω2r (54)

r =

(
gR2T 2

4π2

) 1
3

(55)

r = 2.66× 107m.

The velocity is given by

v = ωr =

(
2πgR2

T

) 1
3

(56)

= 3.87× 103m/s.
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2. The general relativity effect is

dτg
dt

= 1 +
∆U

mc2
(57)

dτg
dt

= 1 +
gR2

c2
R− r
Rr

. (58)

After one day, the difference is

∆τg =
gR2

c2
R− r
Rr

∆T (59)

= 4.55× 10−5s.

The special relativity effect is

dτs
dt

=

√
1− v2

c2
(60)

=

√√√√1−

((
2πgR2

T

) 2
3

)
1

c2

≈ 1− 1

2

((
2πgR2

T

) 2
3

)
1

c2
. (61)

After one day, the difference is

∆τs = −1

2

((
2πgR2

T

) 2
3

)
1

c2
∆T (62)

= −7.18× 10−6s.

The satelite’s clock is faster with total ∆τ = ∆τg + ∆τs = 3.83× 10−5s.

3. ∆L = c∆τ = 1.15× 104m = 11.5km.
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