
Theoretical 3: Solution
Physics of Spin

Part A. Larmor Precession

1. From the two equations given in the text, we obtain the relation

dµ

dt
= −γµ×B. (1)

Taking the dot product of eq (1). with µ, we can prove that

µ · dµ
dt

= −γµ · (µ×B) ,

d |µ|2

dt
= 0,

µ = |µ| = const. (2)

Taking the dot product of eq. (1) with B, we also prove that

B · dµ
dt

= −γB · (µ×B) ,

B · dµ
dt

= 0,

B · µ = const. (3)

An acute reader will notice that our master equation in (1) is identical to the equation of
motion for a charged particle in a magnetic field

dv

dt
=

q

m
v ×B. (4)

Hence, the same argument for a charged particle in magnetic field can be applied in this case.

2. For a magnetic moment making an angle of φ with B,

dµ

dt
= −γµ×B,

|µ| sinφdθ
dt

= γ |µ|B0 sinφ,

ω0 =
dθ

dt
= γB0. (5)

Part B. Rotating frame

1. Using the relation given in the text, it is easily shown that(
dµ

dt

)
rot

=

(
dµ

dt

)
lab

− ω × µ

= −γµ×B− ωk′ × µ

= −γµ×
(
B− ω

γ
k′
)

= −γµ×Beff. (6)

Note that k is equal to k′ as observed in the rotating frame.
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2. The new precession frequency as viewed on the rotating frame S′ is

~∆ = (ω0 − ω)k′,

∆ = γB0 − ω. (7)

3. Since the magnetic field as viewed in the rotating frame is B = B0k
′ + bi′,

Beff = B− ω/γk′ =

(
B0 −

ω

γ

)
k′ + bi′,

and

Ω = γ |Beff| ,

= γ

√(
B0 −

ω

γ

)2

+ b2. (8)

4. In this case, the effective magnetic field becomes

Beff = B− ω/γk′

=

(
B0 −

ω

γ

)
k′ + b(cos 2ωti′ − sin 2ωtj′) (9)

which has a time average of Beff =
(
B0 − ω

γ

)
k′.

Part C. Rabi oscillation

1. The oscillating field can be considered as a superposition of two oppositely rotating field:

2b cosω0ti = b (cosω0ti + sinω0tj) + b (cosω0ti− sinω0tj) ,

which gives an effective field of (with ω = ω0 = γB0):

Beff =

(
B0 −

ω

γ

)
k′ + bi′ + b(cos 2ω0ti

′ − sin 2ω0tj
′).

Since ω0 � γb, the rotation of the term b(cos 2ω0ti
′ − sin 2ω0tj

′) is so fast compared to the
frequency γb. This means that we can take the approximation

Beff ≈
(
B0 −

ω

γ

)
k′ + bi′ = bi′, (10)

where the magnetic moment precesses with frequency Ω = γb.

As Ω = γb� ω0, the magnetic moment does not “feel” the rotating term b (cos 2ω0ti
′ − sin 2ω0tj

′)
which averaged to zero.
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2. Since the angle α that µ makes with Beff stays constant and µ is initially oriented along the z
axis, α is also the angle between Beff and the z axis which is

tanα =
b

B0 − ω
γ

. (11)

From the geometry of the system, we can show that (cos θ = µz/µ):

2µ sin
θ

2
= 2µ sinα sin

Ωt

2
,

sin2 θ

2
= sin2 α sin2 Ωt

2
,

1− cos θ

2
= sin2 α

1− cos Ωt

2
,

cos θ = 1− sin2 α+ sin2 α cos Ωt,

cos θ = cos2 α+ sin2 α cos Ωt.

So, the projected magnetic moment along the z axis is µz(t) = µ cos θ and the magnetization
is

M = Nµz = Nµ
(
cos2 α+ sin2 α cos Ωt

)
. (12)

Note that the magnetization does not depend on the reference frame S or S′ (µz has the same
value viewed in both frames).

Taking ω = ω0 = γB0, the angle α is 900 and M = Nµ cos Ωt.

3. From the relations

P↑ − P↓ =
µz
µ

= cos θ,

P↑ + P↓ = 1,
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we obtain the results (ω = ω0)

P↓ =
1− cos θ

2

=
1− cos2 α− sin2 α cos Ωt

2

= sin2 α
1− cos Ωt

2

=
b2(

B0 − ω
γ

)2
+ b2

sin2 Ωt

2

= sin2 Ωt

2
, (13)

and

P↑ =
b2(

B0 − ω
γ

)2
+ b2

cos2 Ωt

2
= cos2 Ωt

2
. (14)

Part D. Measurement incompatibility

1. In the x direction, the uncertainty in position due to the screen opening is ∆x. According to
the uncertainty principle, the atom momentum uncertainty ∆px is given by

∆px ≈
~

∆x
,

which translates into an uncertainty in the x velocity of the atom,

vx ≈
~

m∆x
.

Consequently, during the time of flight t of the atoms through the device, the uncertainty in
the width of the beam will grow by an amount δx given by

δx = ∆vxt ≈
~

m∆x
t.

Physics of Spin Page 4 of 5



Theoretical 3: Solution
Physics of Spin

So, the width of the beams is growing linearly in time. Meanwhile, the two beams are separating
at a rate determined by the force Fx and the separation between the beams after a time t
becomes

dx = 2× 1

2

Fx
m
t2 =

1

m
|µx|Ct2.

In order to be able to distinguish which beam a particle belongs to, the separation of the two
beams must be greater than the widths of the beams; otherwise the two beams will overlap and
it will be impossible to know what the x component of the atom spin is. Thus, the condition
must be satisfied is

dx � δx,
1

m
|µx|Ct2 � ~

m∆x
t,

1

~
|µx|∆xCt � 1. (15)

2. As the atoms pass through the screen, the variation of magnetic field strength across the beam
width experienced by the atoms is

∆B = ∆x
dB

dx
= C∆x.

This means the atoms will precess at rates covering a range of values ∆ω given by

∆ω = γ∆B =
µz
~

∆B =
|µx|
~
C∆x,

and, if previous condition in measuring µx is satisfied,

∆ωt� 1. (16)

In other words, the spread in the angle ∆ωt through which the magnetic moments precess
is so large that the z component of the spin is completely randomized or the measurement
uncertainty is very large.
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