
Question 3

(a) (4 points) Draw a diagram to describe the physical layout of an ideal (observer, lens
and point source in a straight line) lensing system. Draw the light path and mark the
quantities α and rE . Also mark the angular Einstein radius θE (the angular deflection
of the source image as seen from earth), and the other quantities that an observer on
earth can measure.

Solution:
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Other relevant quantities include the distances to the lens and source DL and DS.
(DL and DS need not be equal.)

• 1 point for correct layout

– Correct answers should show that light is bent
– Apparent source is not required
– Accept answers that show the system as a thin lens approximation

(sharp deflection angles)

• 1 point for light direction correctly marked

– Arrows on the light path

• 1 point for θE , α and rE correctly identified

– 1 correct: 0.4 points
– 2 correct: 0.7 points
– 3 correct: 1.0 points

• 1 point for DL and DS (observables; may have different notation)

– 0.5 points each

Notes:

• ψ and r̃E need not be identified, but may be useful in a later part.



• rE should be perpendicular to the projected light path, but in our astro-
nomical system, it makes no difference if it is perpendicular to the source-
observer line since θE is small. Accept answers that have rE perpendicular
to the source-observer line.

(b) (2 points) Sketch the image of the source (such as a star), as seen by an observer on
earth, in the case where the source, lensing object and observer are on a straight line.

Solution: The image of the source should be a symmetrical (1 point) and circular
(1 point) ring around the lensing object.
Notes:

• Do not accept solutions that indicate a magnified image of the source. This
includes answers which state that the image is a filled in circle.

• 1 point for answers that have 2 source images symmetrically on either side
of the lens because the system should be considered in 3 dimensions instead
of 2.

• Text answers (without any sketch or diagram) are not accepted. Correct
answers must have a sketch (as specified in the question).

(c) (3 points) Sketch the image of the source (such as a star), as seen by an observer on
earth, in the non-ideal case where the source, lensing object and observer are not in a
straight line. Sketch the source-lens system to explain why this is so.

Solution:

WHAT: (1.5 points) The observer will see light from one side of the lens but not
the other side. This means that the Einstein ring should be an arc instead of a
complete circle. The ring may be distorted or broken depending on how much
deviation from an ideal case. Correct answers should not be a perfect circle or
straight line.
Note:

• Solutions that give 2 source images on either side of the lens (with asymme-
try) are awarded 1 point instead of 1.5 point because the system should be
considered in 3 dimensions instead of 2.

• Text answers (without any sketch or diagram) are not accepted. Correct
answers must have a sketch (as specified in the question).

WHY: (1.5 points)

One possible answer:
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For slight deviations from the ideal case, accept also the following diagram if rE1
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is smaller than rE2.

rE1

DS
DL

Source

Lens

ObserverrE2

In general, accept answers which show that the asymmetry in the system will cause
the observer to see something asymmetrical.
Notes:

The key concept in this question is asymmetry. Correct answers for either part
must demonstrate that departures from the ideal case will result in asymmetry in
the observed system, and that the asymmetry about the source-observer line is the
cause of the asymmetry in the observation.

(d) (3 points) The Schwarzschild radius of a black hole defines the point of no return. A
correct expression for the Schwarzschild radius can be obtained by taking it to be the
radius where the escape speed is equal to the speed of light. This means that something
inside the Schwarzschild radius cannot escape the black hole.
Using Newtonian mechanics, derive the formula for the escape speed at a distance r
away from a point object of mass M. Hence, derive the Schwarzschild radius for a
point object of mass M in terms of the gravitational constant G and the speed of light
c. Show your steps and reasoning clearly. (This happens to give the correct expression
for the Schwarzschild radius that comes from general relativity.)

Solution: By definition, the gravitational potential energy of a test mass m at a
distance r from the mass is (0.5 point)

φ = −GMm
r

.

To escape the gravitational potential, the total energy of the test mass needs to be
at least 0 so it should have a kinetic energy of (0.5 point)

K =
GMm

r
=

1
2

mv2
e .

Rearranging the above, the escape speed at distance from mass r is (1 point)

ve =

�
2GM

r
.

Substitute ve = c and rearrange to get (1 point)

rS =
2GM

c2 .

2 points for deriving escape speed (Any reasonable and physically sound method
based on Newtonian mechanics)
1 point for deriving the Schwarzschild radius from the escape speed.
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(e) (1 point) Using the formula for light deflection, write down an expression for the
Schwarzschild radius of a lensing object in the case where the source, lens and ob-
server is in a straight line.

Solution: The Schwarzschild radius is

rS =
2GM

c2 so rS =
1
2

αrE

Notes: Full marks for correct working.

(f) (2 points) Consider the case where we have a lensing object of the order of a few
solar masses (M ∼ a few×1030 kg) in the nearby regions of the galaxy (distance DL ∼
a few× 1018 m away) and a source object somewhat further out (DS ∼ a few×DL).
What can we say about α and θE in this case? (Choose your answer on your answer
sheet. Points will be deducted for wrong answers.)

• α is large and tanα , sinα , cosα
must be calculated exactly.

• α is small and the small angle ap-
proximations to tanα , sinα , cosα
are permissable.

• α is irrelevant and need not be cal-
culated

• θE is large and tanθE , sinθE ,
cosθE must be calculated exactly.

• θE is small and the small angle
approximations to tanθE , sinθE ,
cosθE are permissable.

• θE is irrelevant and need not be cal-
culated

Solution:

• α is small

• θE is small

Notes:

• Choices pertaining to α and θE are to be marked independently (1 point
each).

• The conditions are mutually exclusive so accept only one condition for each
quantity (α , θE). Answers that select more than one condition for a quantity
(α , θE) are wrong (no point to be awarded).

Reasoning: Working out the numbers, we can find that the Schwarzschild radius
is on the order of 104 m. Because α has a maximum of 2π (largest possible angle),
this means the physical Einstein radius rE ∼ 104 m is very small compared to the
distance to the lens DL ∼ 1020 m. The geometry of the system therefore means
that α is actually a very small angle.

Another approximation comes from the geometry of the system which sets bounds
on α and θE so that (see figure in part (a))

tanθE =
rE

DL
=

2rS/α
DL

≈ 10−16

α
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which suggests that α or θE or both should be small.
Based on the geometry of the setup and what we have already established (α
small), we then have the following cases:

• θE large means that DL is small which is not the case here.

• α small, θE small is the only valid outcome here

The result and constraints in the question suggests that α and θE are both small
Because θE is small, the Einstein radius rE ∼ 104 m is very small compared to the
distance to the lensing object DL ∼ 1020 m or source DS. We can therefore take
the small angle approximation where α and θE is involved.

(g) (3 points) Using the conditions in part (f), rewrite your expression in part (e) in terms
of measurable quantities (which are θE , DS and DL) for a lensing object of the order
of a few solar masses (M ∼ a few× 1030 kg) and in the nearby regions of the galaxy
(distance DL ∼ a few×1018 m away) with a source object somewhat further out (DS ∼
a few×DL). Show your working.

Solution: Adding up exterior angles, we see that α = θE + ψ so θE = α −ψ
where is small (ψ and r̃E defined on the following diagram). Also note that rE is
approximately perpendicular to the source-observer system because θE is small.

r̃E

rE

α

DS
DL

Source Lens Observer

ψ θE

α

Apparent Source

Using the small angle approximation for α and θE , we can write
rE

DL
= tanθE ≈ θE and

r̃E

DS
=

rE

DS −DL
= tanψ ≈ ψ

This gives (1 point)

α =
rE

DL
+

rE

DS −DL
So that (1 point)

rS =
1
2

rEα =
1
2

r2
E

�
DS

DL(DS −DL)

�

To write this in terms of θE , DL and DS, we use rE = θEDL to get (1 point)

rS =
1
2

θ 2
E

�
DSDL

DS −DL

�

Notes:

• 1 point for α
• 1 point for rS

• 1 point for final equation
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(h) (2 points) Suppose we have an event where a lensing object of 6.0×1030 kg (3.0 solar
masses), 2.6×1018 m away from earth passes in front of a star 9.2×1018 m away from
earth. This happens such that the ideal configuration occurs during the event. What is
the angular Einstein radius θE (as seen from earth) during this event when the source,
lens and observer line up?

Solution: The Schwarzschild radius of the lens is

rS =
2× (6.673×10−11)×6.0×1030

(3.0×108)2 = 8.9×103 m

From the previous part, the angular Einstein radius is given by

θ 2
E = 2rS ×

�
DS −DL

DSDL

�

= 2×8.9×103 ×
�

(9.2−2.6)×1018

(9.2×1018)× (2.6×1018)

�

= 4.9×10−15

Thus the angular Einstein radius is

θE =

�
4.9×10−15 = 7.0×10−8 radians = 0.014 arcseconds

(1 point for correct answer, 1 point for correct working)
Notes:

• Students are expected to use the formula derived in part (g) to answer this
question.

• For the final answer:

– 0.5 point off for missing units. While angles are mathematically di-
mensionless, a good student should be cognisant of the fact that there
are different physical units for angular measurement, and that units for
angles should be specified.

– 0.5 point off for final answers given to 1 significant figure or less.
– 1 point off if the final number is incorrect.
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