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Theory Q3 

Thermoelectric effects and theirapplication in 
thermoelectric generator and refrigerator(10 points) 

Solution and Marking scheme 

 

A. Heat transfer and thermoelectric generator 

A1. Heat transfer in a homogeneous conducting bar 

A1.1 
0.75 pt 

Consider heat transfer in the segment dx  of the bar in the steady state. Equation for 

the balance of the energy exchange through the cross-sectional area is written as  
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Integration of (A1) gives  
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Constants 1 2,  C C  are derived from the boundary conditions 

1 2 10x T T C T     ,                 (A4) 

22 1
2 1 2

1
.

2

T T L
x L T T C I

L S k


                                               (A5) 

Equation for the temperature distribution in the bar is 
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A1.2 
1.0 pt 

Using (A2) –(A5) we obtain the equation for the heat current at x  
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at 0,x   and x L  
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A2. Relation between Peltier and Seebeck Coefficients 

Thermocouple consists of two subsystems: a) the conducting electron gas that performs an ideal 

themodynamic cycle; b) Nuclei and bounded electrons of the bar crystal that oscillate around 
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equillibrium positions at finite temperature and participate in heat conduction process. If the 

resistance of the thermocouple is neglected, these two subsystems may be considered as 

noninteracting, the electron gas exchanges heat only with the heat source at T1 and the heat sink at 

T2 , performing the ideal Carnot cycle.  

A2.1 
0.25 pt 

Electron gas receives heat from heat source due to the Peltier effect  
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A2.2. 

0.25 pt 

The heat amount transferred to the heat sink due to the Peltier effect  
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A2.3. 

0.5 pt 

Power delivered by the electron gas due to the Seebeck emf is 
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A2.4 
0.5 pt 

The efficiency of the ideal Carnot cycle applied to the thermocouple can be 

written as  
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Thus 
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Comparing these equations, one has 1 1T  .  

This is the Peltier coefficient at the first junction contacting with the heat source. 

Generally, one has .T   
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A3. Thermoelectric generator 

A.3.1. 
0.5 pt 

Power received by the thermocouple from the heat source (see also (A8)) is 
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Here is the Seebeck coefficient of the thermocouple and 
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are its thermal conductance and internal resistance. 

The heat sink receives a power (see also (A9)) 
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A3.2. 
0.75 pt 

The efficiency of the thermoelectric generator is 
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Here we use LR mR . The electrical current in the circuit is 
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Substituting (A20) into (A19) we obtain the expession for the efficiency 
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A3.3. 
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Replacing the figure of merit 
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From (A23) one sees that  larger Z leads to the larger efficiency of the 

corresponding thermoelectric generator. The condition 1 1ZT   can be used for 

material application in thermoelectric generators. 
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A4. The maximum efficiency 

A4.1 
0.25 pt 

When LR R  or m=1, the power consumed on the load is maximum. The 

efficiency in that case is 
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A4.2.  
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Equation (A23) may be rewritten as 
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A4.3. 

0.25 pt 

Using (A25), (A26) we obtain the maximum efficiency of the thermoelectric 

generator 
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(Correct expression containing either ,M  Z  or both is also accepted) 
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A5. The maximum figure of merit 

A5.1 
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According to (A22) Z takes the maximum value mZ Z  when KR y  is 
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A5.2 

0.25 pt
 If the ratio of cross-sectional areas satisfies (A28) then 
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A6. The optimal efficiency 

A6.1. 
0.5 pt 

The thermocouple with two bars made from material A and B has the following 

the figure of merit 
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The optimal efficiency of the thermocouple AB when T1= 423K, T2 = 303K has 

the following value 
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The corresponding ideal Carnot efficiency for that case is 
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A6.2 
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The maximum efficiency of the thermoelectric generator designed from AB 

materials is 
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B. Thermoelectric refrigerator 

B1. The cooling power and the maximum temperature difference 

B1.1 
0.25pt 

For cooling purpose we choose the current direction so that heat is absorbed at 

upper junction (temperature T1) due to Peltier effect and transferred to the A & B 

bars. Using (A.9) one gets cooling power taken out from heat source at T1  
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where ,K R  are thermal conductance and internal resistance of thermocouple. 
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Condition for the maximum cooling power CMq  is founded from 0Cdq
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The maximum temperature depression is derived from the condition 0CMq  , 

which gives 
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B2. The working current 

B2.1 
0.25pt 

Thermocouple AB with  3 13.15 10 KmZ     is used for a refrigerator. The 

lowest cooling temperature  T1min is found from the same equation (B4)  
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Putting 2 300KT   and  3 13.15 10 KmZ    in (B.5) we obtain  

2
1min 2.22 10 K.T                                                          (B.6) 

 
 
 
 
 
 

0.1 
 
 

0.15 

B2.2. 
0.5 

Putting the value of the internal resistance 32
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B3. The coefficient of performance 

B3.1 
0.5pt 

According to the energy conservation law, the power supplied by the electrical 

source P equals to the Joule heat plus Peltier’s heat taken away in thermocouple 

per unit of time:   
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The equation for Coefficient of Performance (COP) is 
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Electrical current I   corresponds to the maximum of the COP is found from the 

equation 0
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Solution of (B.11) is  
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Substituting (B.14) into (B.9) one has 
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