
Theory

Q1-1
English (Official)

Water-Hammer Effect

Introduction

This problem studies variations of fluid pressure caused by pressurewaves in a flowpipe. Proposed tasks
mainly deal with the water-hammer effect arising from both fast and slow closings of a flow-control valve
in the pipe.

We consider only nonviscous liquids and liquid flows which are essentially one-dimensional. All pipes
including their valves are assumed to be rigid, but liquids are not always considered to be incompressible.
If a liquid element of volume 𝑉0 at equilibrium under pressure 𝑃0 is subjected to a change of pressure
Δ𝑃 , the change of its volume Δ𝑉 is assumed to be proportional to Δ𝑃 so that

Δ𝑃 = −𝐵 Δ𝑉
𝑉0

(1)

The constant of proportionality𝐵 represents the bulk modulus of the liquid. For water, take 𝜌0 = 1.0 ×
103 kg/m3 as its equilibrium density and 𝐵 = 2.2 GPa.

Part A. Excess Pressure and Propagation of Pressure Wave (2.2 points)
In a uniform cylindrical pipe of length 𝐿, water is flowing steadily along the +𝑥 direction with horizontal
velocity 𝑣0, density 𝜌0, and pressure 𝑃0. As shown in Fig. 1, the pipe is connected to a reservoir at a depth
ℎ and opens into the atmosphere at pressure 𝑃a.

Suppose the flow-control valve T at the end of the pipe is then shut instantly so that the oncoming liquid
element next to the valve suffers both a pressure changeΔ𝑃s ≡ 𝑃1−𝑃0 and a velocity changeΔ𝑣 = 𝑣1−𝑣0
with 𝑣1 ≤ 0. This causes a longitudinal wave of excess pressureΔ𝑃s to travel upstream in the−𝑥 direction
with a speed of propagation 𝑐.

Fig. 1: Steady flow in a uniform pipe.

A.1 The excess pressure Δ𝑃s is related to the velocity change Δ𝑣 by Δ𝑃s = 𝛼𝜌0𝑐Δ𝑣.
The speed of propagation 𝑐 is given by 𝑐 = 𝛽 + √𝛾𝐵/𝜌0. Find 𝛼, 𝛽, and 𝛾.

1.6pt



Theory

Q1-2
English (Official)

A.2 Calculate values of 𝑐 and Δ𝑃s for the case of water flow with 𝑣0 = 4.0 m/s and
𝑣1 = 0.

0.6pt

Part B. A Model for the Flow-control Valve (1.0 points)
Fig. 2 shows a model for control valve T and the liquid flow through it. The valve is taken to be a short
section of length Δ𝐿 and inner radius 𝑅 near the end A of the pipe. Its cone-shaped outlet has an orifice
of radius 𝑟 and opens into the atmosphere at pressure 𝑃a. Effects of gravity on the efflux are to be
neglected.

The liquid is to be regarded as incompressible and the flow as steady with liquid element at the valve
inlet having velocity 𝑣in, pressure 𝑃in, and density 𝜌0. In Fig. 2, stream lines and normal lines are drawn
only as an aid for visualizing the flow pattern.

Fig. 2: Valve dimensions and contraction of jet.

It is known that, after leaving the valve into the atmosphere, the cross section of the flow will contract
until it reaches a minimum where the stream lines are again parallel. At this point of minimum, the flow
velocity is 𝑣c and the cross section of the flow has a radius 𝑟c = 𝑟

√
𝐶c. Here 𝐶c, called the contraction

coefficient, depends on the ratio 𝑟/𝑅 and the cone angle 𝛽 as shown in Table 1.

𝑟/𝑅 𝐶c(𝛽 = 45∘) 𝐶c(𝛽 = 90∘)
0.00 0.746 0.611
0.20 0.747 0.616
0.30 0.748 0.622
0.40 0.749 0.631
1.00 1.000 1.000

Table 1. Contraction Coefficients for Orifices
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B.1 Find the excess pressure Δ𝑃in = 𝑃in − 𝑃a at the valve inlet where the stream
lines are parallel. Give your answer in terms of 𝜌0, 𝑣in, 𝑟, 𝑅, and 𝐶c.

1.0pt

For all tasks in Part C and Part D, we consider the reservoir-pipe system in Fig. 1 and make the following
assumptions:

• Speed of propagation 𝑐 and density 𝜌0 of liquid are given constants independent of flow velocity.
The ambient atmospheric pressure 𝑃a and the acceleration of gravity 𝑔 are constant.

• Initially, the valve is fully open and the flow in the pipe is steady with fluid pressure 𝑃0 and velocity
𝑣0.

• As in Fig. 1 and Fig. 2, the pipe has length𝐿 and radius𝑅. The valve T is a circular opening of variable
radius 𝑟 with angle 𝛽 = 90∘ and its length Δ𝐿 is negligible so that the valve inlet is effectively at the
end A of the pipe. Effects of gravity on the efflux are negligible.

• Liquid in the reservoir is quasi-static so that its pressure 𝑃ℎ near the pipe entrance B remains con-
stant and we assume that the variation of fluid pressure across the pipe is negligible so that the
flow is one-dimensional throughout the pipe.

• The model outlined in Part B may be used to determine the excess pressure Δ𝑃in = 𝑃in − 𝑃a at the
valve inlet.

Part C. Water-Hammer Effect due to Fast Closure of Flow Control Valve (1.8 points)
Refer to the reservoir-pipe system in Fig. 1. When liquid flow in the pipe is obstructed by complete or
partial closure of the valve, a pressure wave starts traveling upstream. It gets reflected at the reservoir
end of the pipe and travels back to the valve and gets reflected there. Then another pressure wave is
generated and the process just described is repeated. This causes a sequence of sudden pressure surges
and dips for liquid element next to the valve and is referred to as water-hammering.

C.1 Refer to Fig. 1 and Fig. 2. Find the pressure 𝑃0 and velocity 𝑣0 of the steady flow
in the pipe when valve T is fully open (𝑟 = 𝑅). Give answers in terms of 𝜌0, 𝑔, ℎ,
and 𝑃a.

0.6pt

C.2 Consider the same steady flow as in task C.1 with pressure 𝑃0 and flow velocity
𝑣0. Now, at 𝑡 = 0, the valve is closed (𝑟 = 0) instantly. A pressure wave heads
toward the reservoir with speed of propagation 𝑐. Take note 𝑃ℎ = 𝑃0 + 𝜌0𝑔ℎ.
Let 𝜏 = 2𝐿/𝑐. What are the fluid pressure 𝑃(𝑡) and flow velocity 𝑣(𝑡) in the pipe
when 𝑡 is getting very close to each of the instants 𝜏/2 and 𝜏?

1.2pt

Part D. Water-Hammer Effect due to Slow Closure of Flow Control Valve (5.0 points)
Consider again the same steady flow as in task C.1 with pressure 𝑃0 and flow velocity 𝑣0. Now we close
the valve slowly and adopt a finite-step approach to simulate the closing process.

Starting at time 𝑡 = 0, the instant reduction of the radius 𝑟 of the valve (see Fig. 2) is carried out sequen-
tially at a time interval 𝜏 = 2𝐿/𝑐. Immediately after each instant reduction of radius, the flow in the valve
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region is approximated to be steady as in Part B. The pressure and velocity at the valve are then different
from those of the rest of the flow in the pipe.

For each closing step 𝑛, its duration and the radius 𝑟𝑛 of the valve opening are specified in Table 2 along
with the symbols used to represent the corresponding fluid pressure 𝑃𝑛 and flow velocity 𝑣𝑛 at the valve.

closing step 𝑛 time interval of
step 𝑛

ratio 𝑟𝑛/𝑅 pressure at valve when
𝑡 = (𝑛 − 1)𝜏

flow velocity at valve
when 𝑡 = (𝑛 − 1)𝜏

𝑛 = 0 𝑡 < 0 1.00 𝑃0 𝑣0
𝑛 = 1 0 ≤ 𝑡 < 𝜏 0.40 𝑃1 𝑣1
𝑛 = 2 𝜏 ≤ 𝑡 < 2𝜏 0.30 𝑃2 𝑣2
𝑛 = 3 2𝜏 ≤ 𝑡 < 3𝜏 0.20 𝑃3 𝑣3
𝑛 = 4 3𝜏 ≤ 𝑡 < 4𝜏 0.00 𝑃4 𝑣4 = 0

Table 2. Valve closing steps

Take fluid density 𝜌0 and speed of propagation 𝑐 as constants. Let 𝑛 = 0, 1, 2, 3, 4. Define Δ𝑃𝑛 = 𝑃𝑛 − 𝑃0
and Δ𝑣𝑛 = 𝑣𝑛 − 𝑣0. Make sure to enforce the approximation 𝑃ℎ = 𝑃0.

D.1 Obtain an equation which expresses Δ𝑃𝑛/(𝜌0𝑐) in terms of Δ𝑃𝑛−1/(𝜌0𝑐), 𝑣𝑛−1,
and 𝑣𝑛. It must be valid for all steps 𝑛 > 0 specified in Table 2. For 𝑛 = 1, 2, 3,
obtain also an equation which allows 𝑣𝑛 to be computed if both 𝑣𝑛−1 and
Δ𝑃𝑛−1/(𝜌0𝑐) are known.

3.0pt

D.2 Apply the result of task D.1 to water flowwith 𝑣0 = 4.0m/s. Use the graph paper
provided in the Answer Sheet to make all plots of Δ𝑃 versus 𝜌0𝑐𝑣. Be sure to
draw lines and curves intersecting at points having coordinates which give the
values of 𝜌0𝑐𝑣𝑛 and Δ𝑃𝑛 for steps 𝑛 = 1, 2, 3, 4. On the plot, label each point of
intersection (𝜌0𝑐𝑣𝑛, Δ𝑃𝑛) with the value of 𝑛 to which it corresponds. From the
graph, estimate values of 𝜌0𝑐𝑣𝑛 and Δ𝑃𝑛 (both in units of MPa) for 𝑛 = 1, 2, 3, 4.
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