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Magnetic Levitation

Useful Information

(1) Directional derivative of a spatial function 𝑓( ⃗𝑟), given by ∇⃗𝑓( ⃗𝑟), has
∇⃗𝑓 ≡ ( ̂𝑥 𝜕

𝜕𝑥 + ̂𝑦 𝜕
𝜕𝑦 + ̂𝑧 𝜕

𝜕𝑧 )𝑓( ⃗𝑟), where 𝜕
𝜕𝑥 𝑓( ⃗𝑟) denotes a partial derivative of 𝑓( ⃗𝑟) with respect to 𝑥 while

keeping 𝑦 and 𝑧 unchanged.

(2) Integral:

∫∞
0 𝑑𝑡 (𝑎+𝑝𝑡)

[(𝑎+𝑝𝑡)2+(𝑏+𝑞𝑡)2]3/2 = 1
𝑏𝑝−𝑎𝑞 ( 𝑏√

𝑎2+𝑏2 − 𝑞
√𝑝2+𝑞2 ).

Introduction

We intend to study the motion of a small magnetic dipole in the vicinity of a conducting thin film. In
the problem text, the terms dipole and monopole are to be regarded, respectively, as synonymous with
magnetic dipole and magnetic monopole.

A dipole consisting of a spherical permanent magnet with a uniform magnetization �⃗� (magnetic dipole
moment per unit volume) and a uniform mass density 𝜌0 may be treated as a point-like object when its
radius 𝑅 is small. Such a dipole representation is good for describing the magnetic field that the dipole
produces everywhere outside of its sphere. The representation is also a good approximation for the
force acting on the dipole from an applied magnetic field, whenever distances of field sources from the
dipole are much larger than 𝑅.

A point-like dipole can be considered as a pair of monopoles carrying negative and positive magnetic
charges −𝑞m and 𝑞m respectively. The pair has a vanishingly small separation, but possesses a finite
magnetic dipole moment �⃗� = 𝑞m ⃗𝛿m. Here ⃗𝛿m is the displacement vector from the south monopole (−𝑞m)
to the north monopole (+𝑞m). The position of the point-like dipole is chosen to be that of the north
monopole.

The magnetic field �⃗�mp from a monopole 𝑞m is assumed to have a Coulombic form, given by

�⃗�mp = 𝜇0𝑞m
4𝜋𝑟2 ̂𝑟, (1)

where ⃗𝑟 is the displacement vector from 𝑞m to the observation point (or field point), ̂𝑟 is the unit vector
̂𝑟 = ⃗𝑟/𝑟, and 𝜇0 is the free-space permeability. The force exerted by an applied magnetic field �⃗�′ on 𝑞m is
given by ⃗𝐹 = 𝑞m�⃗�′. It follows, from extending the concept of the monopole field just described in Eq.(1),
that the magnetic field �⃗� from a point-dipole is derivable from a scalar potential Φ , given by the form
�⃗� = −∇⃗Φ. The scalar potential Φ is also called the magnetic potential.

The conducting thin film is uniform with thickness 𝑑 in the 𝑧 direction (Fig. 1). It extends horizontally in 𝑥
and 𝑦 directions to infinity and its upper surface is located at a distance ℎ from either a point monopole
or a dipole. We consider only the case ℎ ≫ 𝑑. This allows us to take the electric current density induced
in the film to be independent of 𝑧. We also assume that the displacement current effect to be negligible.



Theory

Q3-2
English (Official)

Fig.1 A monopole 𝑞m appears at a distance ℎ from a conducting thin film of thickness 𝑑. The
origin of the coordinates is located on the upper surface.

The problem is divided into three parts. In Part A, the system consists of a monopole and a thin film,
while in Parts B and C, a moving dipole and a thin film.

We choose the 𝑧 = 0 plane to coincide with the upper surface of the thin film. The vector ⃗𝜌 = 𝑥 ̂𝑥+𝑦 ̂𝑦 = 𝜌 ̂𝜌
denotes the in-plane position vector.

Part A. Sudden appearance of a magnetic monopole: initial response and subsequent
time evolution of the response in the thin film (3.0 points)
We first focus on the initial response of the conducting thin film when at time 𝑡 = 0 a north monopole
𝑞m appears suddenly at the position ⃗𝑟mp = ℎ ̂𝑧 (ℎ > 0), as is shown in Fig. 1. The monopole remains
stationary in all later times (𝑡 > 0).
Our interest here is the initial total magnetic field �⃗�( ⃗𝜌, 𝑧) in regions 𝑧 ≥ 0 and 𝑧 ≤ −𝑑, and the induced
electric current density in the thin film. The total magnetic field �⃗� = �⃗�mp + �⃗�′, where magnetic fields
�⃗�mp and �⃗�′ are, respectively, due to the monopole and the induced current in the thin film. The initial
�⃗�( ⃗𝜌, 𝑧) we refer to is at the time 𝑡0, which falls within the interval ℎ/𝑐 ≤ 𝑡0 ≪ 𝜏c. Here 𝜏c is a time constant
characterizing the subsequent response of the thin film, and 𝑐 is the speed of light in vacuum. In this
problem, we take the limit ℎ/𝑐 → 0 and hence let 𝑡0 = 0.
The calculation of the initial total magnetic field �⃗�( ⃗𝜌, 𝑧) (at 𝑡0 = 0) is facilitated by introducing an image
monopole. For �⃗�( ⃗𝜌, 𝑧) in the region 𝑧 ≥ 0, the image monopole has a magnetic charge 𝑞m and is located
at 𝑧 = −ℎ. On the other hand, for �⃗�( ⃗𝜌, 𝑧) in the region 𝑧 ≤ −𝑑 , the image monopole has a magnetic
charge −𝑞m and is located at 𝑧 = ℎ.
Initial response

A.1 Obtain the initial total magnetic field �⃗�( ⃗𝜌, 𝑧) in 𝑧 ≥ 0 at 𝑡0 = 0. 0.4pt

A.2 Obtain the initial total magnetic field �⃗�( ⃗𝜌, 𝑧) in 𝑧 ≤ −𝑑 at 𝑡0 = 0. 0.2pt

A.3 Find the initial magnetic flux ΦB through surfaces at 𝑧 = 0, and at 𝑧 = −𝑑. 0.4pt

A.4 Obtain the initial induced electric current density ⃗𝑗( ⃗𝜌) in the conducting thin film
at 𝑡0 = 0.

0.6pt
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For 𝑡 > 0, the total magnetic field �⃗� becomes �⃗�( ⃗𝜌, 𝑧; 𝑡) = �⃗�mp( ⃗𝜌, 𝑧) + �⃗�′( ⃗𝜌, 𝑧; 𝑡), by superposition, with
�⃗�′( ⃗𝜌, 𝑧; 𝑡)due to the induced electric current in the thin film. You are required below to obtain an equation
for 𝐵′

𝑧(𝜌, 𝑧; 𝑡) near the 𝑧 = 0 thin film surface. The time-evolution behavior of 𝐵′
𝑧 would reveal a moving

image-monopole picture for the description of the �⃗�′ field near 𝑧 ≈ 0 in 𝑡 > 0.
The equation for 𝐵′

𝑧 inside the thin film is given below,

𝜕2𝐵′
𝑧(𝜌, 𝑧; 𝑡)
𝜕𝑧2 = 𝜇0𝜎 𝜕𝐵′

𝑧(𝜌, 𝑧; 𝑡)
𝜕𝑡 . (2)

This equation has been obtained from imposing inside the thin film theMaxwell equation and the Ohmic
behavior of the conducting thin film ( ⃗𝑗 = 𝜎 ⃗𝐸, where 𝜎 is the electrical conductivity) while neglecting the
displacement-current effect. Term being neglected on the left-hand side of Eq.(2) is 1

𝜌
𝜕

𝜕𝜌 (𝜌 𝜕𝐵′
𝑧

𝜕𝜌 ), based on
the ℎ ≫ 𝑑 condition.

Subsequent response

A.5 Obtain from Eq. (2) an equation of 𝐵′
𝑧(𝜌, 𝑧; 𝑡) near 𝑧 ≈ 0. The equation contains

first partial derivatives of 𝐵′
𝑧(𝜌, 𝑧; 𝑡) with respect to 𝑧, and, separately, to 𝑡.

0.6pt

A.6 Solve for the general form of 𝐵′
𝑧(𝜌, 𝑧; 𝑡) near 𝑧 ≈ 0 in 𝑡 > 0. 0.4pt

A.7 Show that your solution inA.6 reveals amoving image-monopole picture for the
magnetic field𝐵′

𝑧(𝜌, 𝑧 ≈ 0; 𝑡), with a downwardlymoving velocity. Find the speed
𝑣0 of the imagemonopole in terms of known parameters from the problem text.

0.4pt

Part B. Magnetic force acting on a point-like dipole moving with a constant velocity and
at a constant h (4.0 points)
The moving image-monopole concept developed in A.7 for 𝐵′

𝑧 near 𝑧 ≈ 0 can be assumed to hold also
for the �⃗�′ field in the 𝑧 ≥ 0 region. This assumption is good as long as the time evolution is sufficiently
slow in the conducting thin film response.

Fig. 2 A monopole 𝑞m moves with a constant velocity ⃗𝑣 and a constant height ℎ from the con-
ducting thin film. As shown are its coordinates at 𝑡 = 0.

A monopole 𝑞m (Fig. 2) is caused to move in a constant velocity 𝑣 ̂𝑥, with 𝑣 ≪ 𝑐, and a constant height,
at 𝑧 = ℎ, motion up to the present moment (𝑡 = 0). Its present coordinates (𝑥, 𝑦) are (0, 0). Our focus is
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on the magnetic potential Φ+ due to all image monopoles generated by this moving monopole along its
trajectory.

By splitting 𝑞m's trajectory into discrete time steps (a very small time step 𝜏 ), we replace the motion
of the 𝑞m by a hopping at the beginning moment of each time step. The hopping is represented by a
simultaneous removal and creation of the monopoles. The position of the created monopole coincides
with a point on its trajectory right at the beginning moment of this time step. Thus the position of
the removed monopole coincides with its trajectory position at the beginning moment of the previous
time step. This is achieved by a simultaneous sudden appearance of two magnetic monopoles: 𝑞m and
−𝑞m at, respectively, the trajectory positions corresponding to the beginning moments of this and the
previous time step. The two positions are separated by a hopping distance Δ𝑥 = 𝑣𝜏 . This time-step
approach facilitates the determination of all the image magnetic monopoles, and their positions, that
are generated in all the time steps.

A moving monopole

B.1 Write down the present (𝑡 = 0) positions of all the image monopoles of the
types 𝑞m and −𝑞m. The beginning moments of the time steps are at 𝑡 = −𝑛𝜏,
where 𝑛 ≥ 0.

0.8pt

B.2 Find the summation form of themagnetic potential Φ+(𝑥, 𝑧) at 𝑡 = 0 from all the
image monopoles in B.1. Calculate Φ+(𝑥, 𝑧).

0.7pt

Fig. 3 A dipole with an upward-pointingmagnetic dipole moment �⃗� moves with a constant ⃗𝑣
and a constant height ℎ from the conducting thin film. As shown are its coordinates at 𝑡 = 0.

Now consider a point-like moving magnetic dipole as shown in Fig. 3. The dipole, with a dipole moment
�⃗� = 𝑚 ̂𝑧, is caused to move in a constant velocity 𝑣 ̂𝑥 , and a constant height (𝑧 = ℎ) motion up to the
present moment (𝑡 = 0), where its present coordinates are at (0, 0). The point-like dipole can be rep-
resented by two slightly displaced monopoles as has been mentioned in the Introduction section. The
location of themagnetic dipole is chosen to be that of the north monopole, and �⃗� is assumed kept fixed.

A moving dipole

B.3 Find the force ⃗𝐹 acting upon the point-like magnetic dipole by the conducting
thin film at 𝑡 = 0.

1.5pt

Relation between 𝑣0 and 𝑣
For the numerical evaluation in thisPartbelow, we consider a conducting thin film that ismadeof copper,
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such that 𝜎 = 5.9 × 107 Ω−1m−1, 𝑑 = 0.50 cm, and ℎ = 5.0 cm.

B.4 Calculate the value of 𝑣0, the speed of the image dipole as according to A.7. 0.3pt

It is known that the penetration depth 𝛿 (called skin depth), which distance an electromagnetic wave can
penetrate into a conducting slab, depends on the angular frequency 𝜔 of the wave. The dependence is
given by

𝛿 = √ 2
𝜔𝜇0𝜎 . (3)

For the consideration below, we take 𝜔 = 𝑣L/ℎ, where 𝑣L equals the larger velocity of 𝑣 and 𝑣0.

B.5 Obtain the 𝑣 dependence of 𝑣0(𝑣) in both the small and the large 𝑣 regimes. 0.4pt

B.6 Obtain the critical velocity 𝑣 = 𝑣c at which the two regimes in B.5meet. 0.3pt

Part C. Motion of the magnetic dipole when the conducting thin film is superconducting
(3.0 points)
The consideration above can be applied to the case of type-I superconductors, wheremagnetic fields are
completely repelled from the superconductors (the Meissner effect) at all times, by taking the limit that
electrical conductivity 𝜎 → ∞.

Here we consider a point-like magnetic dipole with a horizontal magnetic dipole moment �⃗� = 𝑚 ̂𝑥, a
mass 𝑀0, and located at (𝑥, 𝑦, 𝑧) = (0, 0, ℎ). We focus on vertical motions of the magnetic dipole under
the action of a gravitational field, with gravitational acceleration ⃗𝑔 = −𝑔 ̂𝑧. Weak coupling between the
given dipole orientation and its center-of-mass motion is assumed and is neglected. As such, we fix the
magnetic dipole moment, as is given above, for our considerations below. In addition, we assume an
ultra-high vacuum environment so that no damping to the motion from the residual air needs to be
considered.

C.1 Find the equilibrium distance ℎ0 of the dipole from the superconducting thin
film.

1.2pt

C.2 Find the dipole angular frequency Ω of oscillations about the equilibrium. 0.8pt

Physical parameters for a spherical permanent magnet are as follows: radius 𝑅 = 1.0 𝜇m, mass density
𝜌0 = 7400 kgm−3, 𝑔 = 9.8 ms−2, 𝜇0 = 4𝜋 × 10−7 TA−1m, and magnetization |�⃗� | = 75 × 10−2 T/𝜇0.

C.3 Calculate the value of ℎ0. 0.7pt

C.4 Calculate the value of Ω . 0.3pt




