
 

Solution 

Water Hammer 

Part A. Excess Pressure and Propagation of Pressure wave 

          

A.1 (1.6 pt) Excess pressure and speed of propagation of the pressure wave 

When the valve opening is suddenly blocked, fluid pressure at the valve jumps 

from 𝑃0 to 𝑃1 = 𝑃0 + ∆𝑃s, thus sending a pressure wave traveling upstream (to the 

left) with speed 𝑐 and amplitude ∆𝑃s. Taking positive 𝑥 direction as pointing to 

the right, the velocity of fluid particles next to the valve changes from 𝑣0 to 𝑣1 

(𝑣1 ≤ 0). Thus the velocity change is ∆𝑣 = 𝑣1 − 𝑣0. 

In a frame moving to left (along – 𝑥 direction) with speed 𝑐, i.e., riding on the 

wave (see Fig. S1), velocity of fluid in the pressure wave is 𝑐 + 𝑣1, while that of the 

incoming fluid in the steady flow ahead of the wave is 𝑐 + 𝑣0. Let 𝜌1 be the density 

of fluid in the pressure wave. From conservation of mass, i.e., equation of continuity, 

we have 

𝜌0(𝑐 + 𝑣0) = 𝜌1(𝑐 + 𝑣1)                                                                      (a1) 

or, by letting ∆𝜌 ≡ 𝜌1 − 𝜌0, 

∆𝜌

𝜌1
= 1 −

𝜌0

𝜌1
=

𝑣0 − 𝑣1

𝑐 + 𝑣0
=

−∆𝑣

𝑐 + 𝑣0
                                                     (a2) 

Moreover, impulse imparted to the fluid must equal its momentum change. Thus, in 

a short time interval 𝜏 after the valve is closed, we must have 

𝜌0(𝑐 + 𝑣0)𝜏[(𝑐 + 𝑣1) − (𝑐 + 𝑣0)] = −𝜏∆𝑃 = (𝑃0 − 𝑃1)𝜏          (a3) 

or 

∆𝑃s = −𝜌0𝑐 (1 +
𝑣0

𝑐
) (𝑣1 − 𝑣0) = −𝜌0𝑐 (1 +

𝑣0

𝑐
) ∆𝑣   ⇒    𝛼 = − (1 +

𝑣0

𝑐
)  (a4) 

If 𝑣0/𝑐 ≪ 1, we have  

∆𝑃s = −𝜌0𝑐∆𝑣                                                                                       (a5) 

Note that the negative sign in Eqs. (a4) and (a5) follows from the fact that the 

direction of propagation is opposite to the positive direction for 𝑥 axis (and velocity). 

Otherwise the sign should be positive. Note also that for a compressional wave 

Fig. S1. Pressure wave (shaded) with speed 𝑐 
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(∆𝑃s > 0), the velocity imparted to the fluid particle is in the direction of propagation, 

while for an extensional wave (∆𝑃s < 0), the velocity imparted is in the opposite 

direction of propagation. 

Eqs. (a2) and (a4) can be combined to give 

∆𝑃s = 𝜌0𝑐2 (1 +
𝑣0

𝑐
)

2 ∆𝜌

𝜌1
                                                                       (a6) 

From the definition of the bulk modulus 𝐵, which is assumed to be constant, it 

follows 

∆𝑃s = 𝐵
𝑉0 − 𝑉1

𝑉0
= 𝐵

1/𝜌0 − 1/𝜌1

1/𝜌0
= 𝐵

∆𝜌

𝜌1
                                       (a7) 

From Eqs. (a6) and (a7), we obtain 

𝜌0𝑐2 (1 +
𝑣0

𝑐
)

2

= 𝐵                                                                                (a8) 

Thus 

𝑐 = √
𝐵

𝜌0
− 𝑣0                     ⇒    𝛾 = 1              𝛽 = −𝑣0                    (a9) 

However, if in the definition of bulk modulus one uses the fractional change of 

density ∆𝜌/𝜌0 instead of −∆𝑉/𝑉0, the result is then 𝛾 = 1 + ∆𝑃s/𝐵.* Either result 

is considered valid. 

If 𝑣0/𝑐 ≪ 1, we have 

𝑐 = √
𝐵

𝜌0
                                                                                                  (a10) 

*The result (a7) is pointed out by Dr. Jaan Kalda. 

A.2 (0.6 pt) Values of 𝑐 and ∆𝑃s for water flow 

Ans: 

From Eqs. (a5) and (a10), we have 

𝑐 = √𝐵/𝜌0                                                                                             

Δ𝑃s = 𝜌0𝑐𝑣0 = 𝑣0√𝜌0𝐵                                                                      

Putting in the given values 𝑣0 = 4.0 m/s, 𝑣1 = 0, 𝜌0 = 1.0 × 103 kg/m3, 

and 𝐵 = 2.2 × 109 Pa, we have 

𝑐 = √𝐵/𝜌0 = 1.5 × 103 m/s                                                  (b1) 

Δ𝑃s = 𝑣0√𝜌0𝐵 = 5.9 MPa                                                        (b2) 

so that Δ𝑃s is nearly 59 times the standard pressure.  

Note that 𝑣0/𝑐~10−3 so that the use of approximate formulas (a5) and (a10) is 

justified when solving tasks in this problem. 



 

Part B. A Model for the Flow-Control Valve 

(B.1) (1.0 pt) Excess pressure at valve inlet 

Ans: 

The model assumes the fluid to be incompressible. Neglecting effects of gravity, 

Bernoulli’s principle gives us 

1

2
𝜌0𝑣in

2 + 𝑃in =
1

2
𝜌0𝑣c

2 + 𝑃a                                                                   (c1) 

Equation of continuity and definition of contraction coefficient imply that 

 𝜋𝑅2𝑣in = 𝜋𝑟c
2𝑣c = 𝜋𝑟2𝐶c𝑣c                                                                          

Therefore  

𝑣c =
1

𝐶c
(

𝑅

𝑟
)

2

𝑣in                                                                                     (c2) 

From Eqs. (c1) and (c2), we obtain 

∆𝑃in = 𝑃in − 𝑃a =
1

2
𝜌0𝑣in

2 [
1

𝐶c
2

(
𝑅

𝑟
)

4

− 1] =
𝑘

2
𝜌0𝑣in

2                     (c3) 

This may be cast into a form involving only dimensionless variables: 

∆𝑃in

𝜌0𝑐2
=

1

2
(

𝑣in

𝑐
)

2

[
1

𝐶c
2

(
𝑅

𝑟
)

4

− 1] =
𝑘

2
(

𝑣in

𝑐
)

2

                                   (c4) 

where 

𝑘 = [
1

𝐶c
2

(
𝑅

𝑟
)

4

− 1]                                                                              (c5) 

Thus we see from eq. (c4) that ∆𝑃in is a quadratic function of 𝑣in. 

Part C. Water-Hammer Effect due to Fast Closure of Flow-Control Valve 

(C.1) (0.6 pt) Pressure 𝑃0 and velocity 𝑣0 when the valve is fully open 

Ans: 

According to Bernoulli’s theorem and the definition of 𝑃ℎ, we have 

 Fig. 2. Valve dimensions and contraction of jet. 
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1

2
𝜌0𝑣0

2 + 𝑃0 =
1

2
𝜌0𝑣c

2 + 𝑃a = 0 + 𝑃a + 𝜌0𝑔ℎ = 𝑃ℎ                       (d1) 

From the second equality in the preceding equation, it follows 

𝑣c = √2𝑔ℎ                                                                                                       

Furthermore, from continuity equation and 𝐶c(𝑟 = 𝑅) = 1.0, we have 

 𝜋𝑅2𝑣0 = 𝜋(𝐶c𝑅)2𝑣c = 𝜋𝑅2𝑣c  ⇒  𝑣0 = 𝑣c = √2𝑔ℎ                    (d2) 

Therefore 

𝑃0 = 𝑃a = 𝑃ℎ − 𝜌0𝑔ℎ                                                                           (d3) 

(C.2) (1.2 pt) Pressure 𝑃(𝑡) and flow velocity 𝑣(𝑡) just before 𝑡 =
𝜏

2
=

𝐿

𝑐
 and 𝑡 = 𝜏 

Ans: 

When the valve is open, the flow in the pipe is steady with velocity 𝑣0 and 

pressure 𝑃0. The sudden closure of the valve causes an excess pressure Δ𝑃𝑠 on the 

fluid element next to the valve, causing it to stop with velocity 𝑣1 = 0. The velocity 

change is thus ∆𝑣 = 𝑣1 − 𝑣0 = −𝑣0. Thus, according to Eq. (a5), the excess pressure 

on the fluid is given by 

𝛥𝑃s = −𝜌0𝑐∆𝑣 = 𝜌0𝑐𝑣0                                                                          (e1) 

At time 𝑡 = 𝜏/2 = 𝐿/𝑐, the pressure wave reaches the reservoir. The velocity of 

fluid in the length of the pipe has all changed to 𝑣(𝜏/2) = 𝑣1 = 𝑣0 + ∆𝑣 = 0 and 

the fluid pressure is 𝑃(𝜏/2) = 𝑃1 = 𝑃0 + Δ𝑃s = 𝑃0 + 𝜌0𝑐𝑣0. 

At the reservoir end of the pipe, fluid pressure reduces to the constant 

hydrostatic pressure 𝑃ℎ = 𝑃0 + 𝜌0𝑔ℎ. Equivalently, we may say that the reservoir 

acts as a free end for the pressure wave and, in reducing its excess pressure to 𝑃ℎ, 

causes a compression wave to be reflected as an expansion wave. Relative to the 

hydrostatic pressure 𝑃ℎ, the amplitude of the incoming pressure wave is ∆𝑃1r =

𝑃1 − 𝑃ℎ, hence the reflected expansion wave will have an amplitude ∆𝑃1
′ = −∆𝑃1r 

and we have 

∆𝑃1
′ = −∆𝑃1r = 𝑃ℎ − 𝑃1 = (𝑃0 + 𝜌0𝑔ℎ) − (𝑃0 + 𝜌0𝑐𝑣0) = −𝜌0𝑐(𝑣0 − 𝑔ℎ/𝑐)   (e2) 

(Here we allow the pressure amplitude to have both signs with negative amplitude 

signifying an expansion wave.) This will cause the fluid at the reservoir end of the 

pipe to suffer a velocity change (keeping in mind that the direction of propagation is 

now the same as the +𝑥 axis) 

∆𝑣1r = +∆𝑃1
′/(𝜌0𝑐) = −(𝑣0 − 𝑔ℎ/𝑐)                                                        

Consequently, its velocity changes to 

𝑣1r = 𝑣1 + ∆𝑣1r = 0 − (𝑣0 −
𝑔ℎ

𝑐
)                                                    (e3) 

Ahead of the front of the reflected wave, conditions are unchanged and the particle 

velocity is still 𝑣1 = 0 and the fluid pressure is still 𝑃1 = 𝑃0 + Δ𝑃s, but behind the 

wave front the particle velocity now becomes 𝑣1r = −(𝑣0 − 𝑔ℎ/𝑐) and the 

pressure becomes 



 

𝑃1 + ∆𝑃1
′ = (𝑃0 + 𝜌0𝑐𝑣0) − 𝜌0𝑐 (𝑣0 −

𝑔ℎ

𝑐
) = 𝑃0 + 𝜌0𝑔ℎ                (e4) 

Therefore, just moment before 𝑡 = 𝜏 = 2𝐿/𝑐 when the front of the reflected wave 

reaches the valve, the fluid in the whole length of the pipe will be under the 

pressure 𝑃(𝜏) = 𝑃0 + 𝜌0𝑔ℎ = 𝑃ℎ as given in Eq. (e4) , and all fluid particles in the 

pipe will move, as given in Eq. (e3), with velocity 𝑣(𝜏) = 𝑣1r = −𝑣0 + 𝑔ℎ/𝑐, i.e., the 

fluid in the pipe is expanding and flowing toward the reservoir. 

Part D. Water-Hammer Effect due to Slow Closure of Flow-Control Valve 

(D.1) (3.0 pt) Recursion relations for Δ𝑃𝑛 and 𝑣𝑛 

Ans: 

Enforcing the approximation 𝑃ℎ = 𝑃0 + 𝜌0𝑔ℎ ≈ 𝑃0 is equivalent to putting 

ℎ = 0 in all of the results obtained in task (e). 

(1) Partial closing 𝑛 = 1 

At the valve, immediately after partial closing 𝑛 = 1, fluid pressure jumps 

from 𝑃0 to 𝑃1, causing flow velocity to change from 𝑣0 to 𝑣1. The pressure and 

velocity changes are related by Eq. (a5): 
1

𝜌0𝑐
(𝑃1 − 𝑃0) = −(𝑣1 − 𝑣0)                                                                 (f1) 

Just before reflection by the reservoir, the fluid in the entire pipe has pressure 𝑃1 

and velocity 𝑣1. After reflection by the reservoir, i.e., a free end, and before the start 

of valve closure 𝑛 = 2, the fluid in the entire pipe has pressure (Eq. (e4) with ℎ = 0)  

𝑃1 − (𝑃1 − 𝑃0) = 𝑃0                                                                                        
and velocity 

𝑣1
′ = 𝑣1 +

−(𝑃1 − 𝑃0)

𝜌0𝑐
= 𝑣1 + (𝑣1 − 𝑣0)                                                   

(2) Partial closing 𝑛 = 2 

Immediately after partial closing 𝑛 = 2, valve pressure changes from 𝑃0 to 𝑃2, 

causing flow velocity to change from 𝑣1
′  to 𝑣2. The pressure and velocity changes are 

given by Eq. (a5): 
1

𝜌0𝑐
(𝑃2 − 𝑃0) = −(𝑣2 − 𝑣1

′ ) = −𝑣2 + 𝑣1 + (𝑣1 − 𝑣0)                  (f2) 

Using Eq. (f1), we may rewrite the preceding equation as 
1

𝜌0𝑐
(𝑃2 − 𝑃0) = −(𝑣2 − 𝑣1) −

1

𝜌0𝑐
(𝑃1 − 𝑃0)                                  (f3) 

Just before reflection by the reservoir, the fluid in the entire pipe has pressure 𝑃2 

and velocity 𝑣2. After reflection by the reservoir and before valve closure 𝑛 = 3, the 

fluid in the entire pipe has pressure 

𝑃2 − (𝑃2 − 𝑃0) = 𝑃0                                                                                        
and velocity 

 𝑣2
′ = 𝑣2 + (𝑣2 − 𝑣1

′ )                                                                                        



 

(3) Partial closing 𝑛 = 3 

Immediately after partial closing 𝑛 = 3, valve pressure changes from 𝑃0 to 𝑃3, 

causing flow velocity to change from 𝑣2
′  to 𝑣3. The pressure and velocity changes are 

given by Eq. (a5): 
1

𝜌0𝑐
(𝑃3 − 𝑃0) = −(𝑣3 − 𝑣2

′ ) = −𝑣3 + 𝑣2 + (𝑣2 − 𝑣1
′ )                 (f4) 

Using Eq. (f2), we may rewrite the preceding equation as 
1

𝜌0𝑐
(𝑃3 − 𝑃0) = −(𝑣3 − 𝑣2) −

1

𝜌0𝑐
(𝑃2 − 𝑃0)                                 (f5) 

Just before reflection by the reservoir, the fluid in the entire pipe has pressure 𝑃3 

and velocity 𝑣3. After reflection by the reservoir and before valve closure 𝑛 = 4, the 

fluid in the entire pipe has pressure 

𝑃3 − (𝑃3 − 𝑃0) = 𝑃0                                                                                        
and velocity 

𝑣3
′ = 𝑣3 + (𝑣3 − 𝑣2

′ )                                                                                       
(4) Partial closing 𝑛 = 4 

When the valve is fully shut at valve closing 𝑛 = 4, the valve becomes a fixed 

end, so the fluid velocity at the valve changes from 𝑣3
′  to 𝑣4 = 0. The pressure 

𝑃4 at the valve is then given by Eq. (a5): 
1

𝜌0𝑐
(𝑃4 − 𝑃0) = −(𝑣4 − 𝑣3

′ ) = −𝑣4 + 𝑣3 −
1

𝜌0𝑐
(𝑃3 − 𝑃0)          (f6) 

Finally, if we take note of the fact that ∆𝑃0 = 0 and 𝑣4 = 0, then all equations 

obtained above relating excess pressures and velocity changes after valve closings all 

have the same form: 
∆𝑃𝑛

𝜌0𝑐
= −(𝑣𝑛 − 𝑣𝑛−1) −

∆𝑃𝑛−1

𝜌0𝑐
                      (𝑛 = 1,2,3,4)             (f7) 

To solve for Δ𝑃𝑛 = 𝑃𝑛 − 𝑃0, we note that, from Eqs. (c3) and (c5), we have 

another relation between Δ𝑃𝑛 and 𝑣𝑛:  

∆𝑃𝑛 =
1

2
𝑘𝑛𝜌0𝑣𝑛

2                                              (𝑛 = 1,2,3)                 (f8) 

where 𝐶𝑛 represents 𝐶c for 𝑟 = 𝑟𝑛 and 

𝑘𝑛 = [
1

𝐶𝑛
2

(
𝑅

𝑟𝑛
)

4

− 1]                                       (𝑛 = 1,2,3)                 (f9) 

Combining Eqs. (f7) and (f8), we have a quadratic equation for 𝑣𝑛:  
1

2
𝑘𝑛 (

𝑣𝑛

𝑐
)

2

+
𝑣𝑛

𝑐
+ (

∆𝑃𝑛−1

𝜌0𝑐2
−

𝑣𝑛−1

𝑐
) = 0             (𝑛 = 1,2,3)     (f10) 

which can be solved readily using the formula  

𝑣𝑛

𝑐
=

−1 + √1 + 2𝑘𝑛 (
𝑣𝑛−1

𝑐
−

∆𝑃𝑛−1

𝜌𝑐2 )

𝑘𝑛
             (𝑛 = 1,2,3)       (f11) 

If both ∆𝑃𝑛−1/(𝜌𝑐2) and (𝑣𝑛−1/𝑐) are known, Eq. (f11) may be used to 

compute 𝑣𝑛/𝑐 and then find ∆𝑃𝑛/(𝜌𝑐2) by using Eq. (f8). Therefore, Eq. (f7) may 



 

be solved iteratively starting with 𝑛 = 1 until 𝑛 = 3. For 𝑛 = 4, we know 𝑣𝑛 = 0, so 

Eq. (f7) may be used directly to find ∆𝑃𝑛. 

Note that, from Eq. (f8), ∆𝑃𝑛−1 is a quadratic function of 𝑣𝑛−1, so that if 𝑣𝑛−1 

is known, then 𝑣𝑛 may be computed using Eq. (f11) and then ∆𝑃𝑛 may again be  

computed using Eq. (f8). 

(D.2) (2.0 pt) Estimating Δ𝑃𝑛 and 𝜌0𝑐𝑣𝑛 by graphical method 

Ans: 

To solve Eqs. (f7) and (f8) using graphical method, we rewrite them as follows: 

∆𝑃𝑛 = −(𝜌0𝑐𝑣𝑛 − 𝜌0𝑐𝑣𝑛−1) − ∆𝑃𝑛−1        (𝑛 = 1,2,3,4)              (g1) 

∆𝑃𝑛 =
𝑘𝑗

2𝜌0𝑐2
(𝜌0𝑐𝑣𝑛)2                                   (𝑛 = 1,2,3,4)              (g2) 

In a plot of ∆𝑃 vs. 𝜌0𝑐𝑣, Eq. (g1) and Eq. (g2) correspond to a line passing through 

the point (𝜌0𝑐𝑣𝑛−1, −∆𝑃𝑛−1) with slope −1 and a parabola passing through the 

origin, respectively. Thus one may readily obtain the solutions for each step of valve 

closing by locating their points of intersection, starting with 𝑛 = 1. The result is 

shown in the following graph. 
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cv/MPa 

P-cv at valve 

n=3, r/R=0.2 n=2, r/R=0.3 n=1, r/R=0.4

𝑛 = 1 

𝑛 = 2 𝑛 = 3 

𝑛 = 4 

𝜌0𝑐𝑣1,−∆𝑃1  

𝜌0𝑐𝑣2, −∆𝑃2  𝜌0𝑐𝑣3, −∆𝑃3  

0, ∆𝑃4  

Excess Pressures and particle velocities at the valve for slow closing 

𝑛 𝑟𝑛/𝑅 𝐶𝑛 𝑘𝑛 𝑣𝑛/(m/s) 𝜌0𝑐𝑣𝑛/MPa ∆𝑃𝑛/(MPa) ∆𝑃𝑛/(𝜌0c𝑣0) 

0 1.00 1.00 0.0 4.0 6.0 0.0 0.0 

1 0.40 0.631 97.1 3.6 5.8 0.62 10 % 

2 0.30 0.622 318. 2.5 3.8 1.0 17 % 

3 0.20 0.616 1646. 1.1 1.7 1.1 18 % 



 

𝜌0𝑐 = 1.50 × 106 kg m−2 s−1               𝑣0 = 4.0 m/s 

4 0.00   0.0 0.0 0.64 11 % 



 

----------------------------------------------------------------------------------------------------------- 

Appendix 

(The following table and graph are for reference only, not part of the task.) 

For 𝑣0 = 4.0 m/s, 𝑐 = 1.5 × 103 m/s, and 𝜌 = 1.0 × 103 kg/m3, the results 

for 𝑣𝑛 and Δ𝑃𝑛 are shown in the following table and graph. They are computed 

according to equations given in task (f). Note that for a sudden full closure of the 

valve, we have Δ𝑃sudden = 𝜌c𝑣0 = 6.0 MPa. 

 

 

 

--------------------------------------------------------------------------------------------------- 
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1.5
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Pn /MPa 

valve closing step n 

Excess pressures at valve 

Excess Pressures and particle velocities at the valve for slow closing 

𝑛 𝑟𝑛/𝑅 𝐶𝑛 𝑘𝑛 𝑣𝑛/(m/s) 𝜌𝑐𝑣𝑛/MPa ∆𝑃𝑛/(MPa) ∆𝑃𝑛/(𝜌c𝑣0) 

0 1.00 1.00 0.0 4.0 6.0 0.0 0.0 

1 0.40 0.631 97.1 3.58 5.37 0.624 10 % 

2 0.30 0.622 318. 2.50 3.75 0.997 17 % 

3 0.20 0.616 1646. 1.13 1.695 1.06 18 % 

4 0.00   0.0 0.0 0.643 11 % 




