Theoretical Question 2: Ray tracing and generation of entangled light

Part A. Light propagation in isotropic dielectric media

A.10.4 pt

Ans: \/;706

Solution:

From kx E = wB = wuoH and kx H = —wD, one obtains k x (Ex E) = —w?uyD. By using
the given identity A x (B x C) = B(A-C)—C(A-B), one finds k x (k x E) = k(k-E) — k2E.
Since D -k = 0 and D = ¢E, we find k x (k x E) = —k?E and the relation
kx (k x E) = —w?uoD reduces to —k2E = —w?pioek.

Now the phase delocity is determined by kr—“t) = 0, we find that the phase velocity
¥, = 4 = @[ Clearly, we have & = \/W' Hence v, = \/}1706

A.2 0.2 pt

Ans: c,/jp€

Solution:

Fromvp:ﬁzﬁ,weﬁndn:c\/ﬁ

A.3 0.4 pt

Ans: /27, Up = Up = \/%

Solution:

To find the speed of the ray, we first note that the direction of the energy flow, given by
the Poynting vector S=ExH , is in the same direction of k. The electromagnetic energy

density u = u, + u,, with u, = %Eﬁ and u,, = léf[

Now, from kxH = —wﬁ, one has D = ——ka Hence u, = pE kx H = Lpl% ExH.
Similarly, from kxE = wé, we find u,, = ﬁBJ{;x E= ﬁ/%ﬁ x H. Hence u = %/%Exé
We find v, = S/u =v, = \/ﬁ

Part B. Light propagation in in uniaxial dielectric media

B.1 1.5pt

Ans: n = n,, B:j:l%xgzj:(—cos&(),siné), D==+jorn= Lol B = +j,

\/ng sin2 0+n2 cos2 0’
D = +y X k = +(cos 6,0, —sinf). For § = 0, there is only one permitted value for the

refractive index
Solution:

From k x E = wuoH and k x H = —wD, one obtains k x (k X E) = —w?pD. Writing out



components and using w = <k, we find

2

—cos?0F, + cosOsinE, = —n—gEx,
n
2 .2 n
—cos”0E, —sin“ 0F, = _ﬁEy’
n2
—sin?0FE, + cosOsinbE, = ——;Ez.
n

After a bit rearrangement, we obtain

o

n2
(—g — cos? 9) E, 4+ cosfsinfFE, =0

n
n2
cosfsinE, + (—; — sin? 0) E,=0.
n
The vanishing of the determinant yields
2 2 2
(1 — %) {(% — cos? 9)(% — sin® ) — sin” 6 cos® 0] = 0. (1)

Clearly, for a general 6, we have two solutions for n:

(1) n=mn,

In this case, E, = E, = 0. E is parallel to the y axis. From k x E = wB and k x (Moé) =
—wﬁ, we obtain the directions of B and D as B = +k x g = £(—cosf,0,sinf) and
D =—kx B==+(0,1,0) = +4.

(2) (Z—é — cos? 0)(2—% — sin® @) — sin®f cos? § = 0.

\/ng sin? +n2 cos? 0
one refractive index. This is the direction of the optic axis.

After rearrangement, we find n = . Clearly, at § = 0, n = n,, there is only

In this case, E, = 0. Hence E lies in the 2z plane. Hence the relation kx E=wB implies

B = 4. The relation k x (uoB) = —wD implies D = +§ x k.

B.2 0.8 pt
Ans: (1) when n = n,, E = 4§ and this is an ordinary ray. tana = 0.
— NoNe n — 1 _ 2 2 & ija 1
(2) when n = ok E =+ /= pre Sin2{9( n; cos#,0,n;sinf) and this is an

_ (n2-n?)tan@

extraordinary ray. tan o T a6

Solution:
(1) For n = n,, both E and D are parallel to the y axis. This is an ordinary ray with

tana = 0.



B o B o . .
(2) For n = e rres n # n,, £, = 0. By substituting n back into the equations of

2
E, and E,, we find that Zg

n2
ne

sindFE, 4+ cosE, = 0. Hence the electric field lies in zz plane

with £ = i\/ng — ;Mg sm29(_nz cos6,0,n2sinf) ( B points in Fy direction.). Therefore,
FE is not perpendicular to k£ and lies in the xz plan in together with D and k. This is the
extraordinary ray.

Since k x H = —wﬁ, D is perpendicular to k. Hence D = +(—cos#,0,sin0). Let B = 7,
the relative orientation of £ and D for a given # are shown in the following figure for the

case when n, < n,.

Z —_
k
9 D1k
B X
v D
E
Let the angle relative to x axis be #; and 6, for E and D. We have tan 0, = —tanf and
2 _ 2_ .2 /]

tanf; = —Z—é’ tanf. Hence tana = tan(fy — 01) = 1tj?a9591t?;n9912 = %’%ﬁﬂ%‘zt)ats;a. The same

result remains when n, > n, except that tan a < 0, indicating that the relative orientation

of E and D is reversed.

B.3 0.6 pt
Ans: n=mn,, E = +k x Z/sinf and this is an ordinary ray.
A~ 2 9]% 2 gin2 §—n2 20)2 L.
when n = Lot , B =+ 1 e tom H"O.S"g necos 92 and this is an
\/ng sin? 4-n2 cos2 @ \/né cos? f+nl sin? @ s

extraordinary ray.

Solution: The problem has an axial symmetry so that in the plane formed by the z
axis and l%, one can write k = k,z + kﬂ;‘l and E = E.zZ + ELI%L, where l;:l is perpen-
dicular to 2. Clearly, we k., = kcosf, k, = ksinf, E, = Fcosf, and £, = FEsinf.
Writing out the components for the equation: k x (l; X E) = —w2u05, we get ex-
actly the same equations except that FE, is replaced by E,. Hence all of the solu-
tions are the same except & is replaced by k.. Since k,sinf = k — cos 0z, we obtain

fe—cos 0z s
that when n = Lot , B =+ L [—n? cos 0% + n2sinfz] =
\/n% sin? 0+n2 cos? 0 \/n‘c} cos2 0+nisin S

3



1 —n?2 cos Ok+(n2 sin? 6—n2 cos? §) 2

\/né cos2 f4+nl sin @ sin ¢
B.4 0.8 pt
Ans: (1) n =mn,, tana, =0, v, = =, S = (sind, 0, cos 0)
2 2 102 12
Q)= e tana, = B o e ey
S = L (n2sin@,0,n? cosh)

\/n‘é cos2 0+n4 sin? 0
(3) me = /(5 22 + (S - 2

Solution:

The direction of the energy flow is given by the Poynting vector, S = Ex H. Let the energy
density of EM wave be u and the ray velocity be v,. Then v, = 2. Here u = u, + u,, with
Up = %E . D and u,, = %é . H. There are two cases:

(i)n = n,, E = (0, E,0), D=c¢E, k x E:wugﬁ, kx H=—-wD.

l%, E and H are mutually perpendicular to each other. Hence S is parallel to l;;, ie.,

S = (sin#, 0, cosA) and tan a, = 0.

Now from k x H = —wl_j, one has D = —il%xf_f. Hence u, = —ﬁﬁl%xﬁ = ﬁ/%ﬁxﬁ
Similarly, we find u,, = 53— H kx E = %f{ E x H. Hence u = Uil% E x H. Since S = k,
Weﬁndu:Ui. HencevT:%:vp:%:ni.

P o
(i) n = Lol . In this case, we can tak B = (0, B,0) (negative y direction works

\/ng sin? 4-n2 cos2 @
as well). D, E and k are in the xz plane and D is perpendicular to k. Therefore, the angle

between S = tﬁ x B and k is equal to the angle between D and E, ie., a, = a. This is
shown in the following figure when n, < n, (for n, > n,, both a and «, are negative, the

relative orientation of E and D is reversed and ordering of S and k are switched).

ol T
e
= W




(n2—n2)tan@

23 tanZ0 Now, because

Therefore, from problem (d) (ii), we get tana, = tana =

u= vik Ex H = vi|E X H| cos a, we obtain v, = % = 2~ Hence the phase speed v, and
p p
2 20 20
the ray speed are related by v, = v, cos. From tan«, one finds cos v = == tnpsint0
\/n;l cos2 0+nisin 0
_ ¢ _ ¢ nd cos? f+nl sin? 0
Hence v, = ncosa  noNe \/n?Z cos2 +n2sin? 6"
. ) . . 2_n2)sin 6 cos
Clearly, S = (sin(f 4+ a),cos(d + «)). Since sinq = —Raznedsinfeosd g co5q =
\/n‘é cos? 0+nd sin? 9
2 29 2 g 29 A .
neccos Trme S e find S = L (n2sin@,0,n? cos®).
\/ngc cos2 f+nd sin? 0 \/n‘elc cos2 +nd sin? 0
2 2 2 2 oin2 2 o 2,2 2 2 A ~

2 _ [ c _ 92 92nZcos®f+nssin“h _ (nZsinf)*ni+(nZcosf)ng _ L aN2,.2 .
From ns = (vr> = oM nd cos? O+ndsin?0 ndcos2 0+nisin?260 we find n, = (S QZ) e + (S
2)2n? .
B.5 1.1 pt
Ans: A= Pi(n%sin’6, — P,), B = —2P3(n*sin’6;, — P,), C = P,n?sin® 6, — P?

. = I 1 1), = 3\~ s~ Uq 1), = [N~ S1n" 04 3
¢ — O tan 92 — nne sin 61
, —MesNZlL

noy/n2—n?sin? 6,

¢ =m/2, tanfy = %.
Solution:
Let the distance along z axis between A and B be d and the point of the interface that
the ray passes be the origin O. The coordinates of B and A points can be expressed as
(hg,0,2) and (hy1,0,d — ). The distances are then given by AO = d; = \/h? + (d — 2)? and
OB=d, = \/W . The propagation time from A to B is determined by the ray speed
vy as (ding + dang)/c, where ng; are ray indices for medium ¢. According to the Fermat’s
principle, we need to minimize the optical path length defined by A = ding + dong. Ac-
2, = (8% - )2 + (35

cording to problem (e), we have n2, = Z9)?n2. For an isotropic medium,

the ray index is simply the refractive index, i.e., ng; = n. Using the following relations

OB

ha
- Ty = cos(¢p — by) = —cos ¢ + ° sin o,
2 2

OB ds
gz; cZy = cos(g + ¢ —0y) =sin(fy — ¢) = 5 cos ¢ — z sin ¢,
we find
A =ny/h3 + (d — 2)2 4+ \/(hacos ¢ + zsin ¢)2n2 + (—hysin ¢ + z cos ¢)2n2.
The minimum occurs When = 0. We obtain
z—d (hy sin ¢ cos p(n? — n2) + z(n?sin® ¢ + n? cos? ¢)

+
\/ﬁ V/(hg cos ¢ + zsin ¢)2n2 + (—hysin ¢ + z cos ¢)2n2



Recognizing = sin #;, moving the second term to the left and taking square of

hi+(d—z)?
the equation, we obtain

(Pg — P1 tan92)2

2 2.2
n’sin“ 6, =
! Pltan292—2P3tan92+P2’

where P, = n2cos? ¢ + n2sin® ¢, P, = n2sin® ¢ + n?cos? ¢, and Py = (n?2 — n2)sin ¢ cos ¢.

By expanding the above equation out, we find
Py(n?sin®0; — P)tan® 0, — 2P3(n*sin? 0, — P,) tan6; + Pyn*sin® 6, — P32 = 0.

Hence A = Py(n?sin?6, — P), B = —2P;(n?sin?0; — P1), and C = Pyn®sin0, — P2.
For ¢ = 0, we have P; = 0, P, = n2, and P, = n?. We find n?(n%sin®6; — n?)tan? 6, +

n?n?sin?0; = 0. Hence tanf, = __ mnesinby
noy/nZ—n?sin? 6,
For ¢ = m/2, we have P5 = 0, P = ng and P, = ng We find

nn, sin 01

ney/n2—n2sin? 0y

n2(n?sin?0; — n?) tan? 0y + n2n%sin® §; = 0. Hence tan 0y =

Part C. Entanglement of light

C.1 0.8 pt

Ans:(1) w = w; £ we, k= El + 152

(2) hw = hwy £ hws, hk = hEl + hEg represents the energy conservation and momentum
conservation of photons.

(3) Splitting of photon: Energy conservation w = w; + wp, momentum conservation: k=
Ky + k.

Solution:

For a light wave with frequency w and E, the corresponding polarization density and the
electric field are in the form of A cos(wt — k- ), which can be rewritten as é(ei(“t’g":‘) +
e_i(‘”t_’;ﬂ). By substituting the above form into the equation PNF = D2k Xg,)fEJEk and
equating the relevant exponents, we find all possible relations are

—

w:w1+wQ,k:E1+Eg.

Or w=w —wy, k =k — ka,
where we have made use of the fact that the frequency is positive. The meaning for the these
relations is clear if one recall that the energy and momentum of a photon is given by Aw and

hik. The relation of hw = hwy + hws, Bk = h/% + h/% represents the energy and momentum



conservations when a photon with (w, E) is annihilated and split into two photons with (wy,
El) and (ws, Eg), while the relation of hw = hw — hws, hk = hl% — hEQ represents the energy
and momentum conservations when a photon with (wy, El) is annihilated and split into two

photons with (w, lg) and (ws, 122)

C.2 0.8 pt

Ans: o +o0+o0,e—>e+e

Solution:

For the collinear case, the phase matching conditions become w = w; +ws, ni(z’)w = o (wcl)wl +

ng (w2)ws

2=, where i, j, and k are indices of either o or e. Assuming that w; > wy, one can solve

w1 as w; = w — wy. We obtain

na() = ny(er) = = [mawa) = ()],

(2)

Clearly, because w > wy > wy, if i = j =k, n;(w) —n;(wi) > 0 and ng(ws) —nj(wr) <0, the
above equation cannot be satisfied. For other cases, because there is no relation between n,
and n., the phase matching conditions can be satisfied. Hence only o - o+o0 and e — e+e

are not possible.

C.3 1.5 pt

Ans: (1) M = KlN@e b otliRe 'y — N, /2M and F = —(Q - Q)(2 — 1) + De
(2) the angle between the axis of the cone and 2" is N/ K, = _Ko[l—Ne?é(ee,ggecot T

(3) the angle of cone is about \/IL(Z_M = _(512\4—;2:)(“_10 — )+ %.

Solution:

To satisfy the phase matching condition, we expand the angular frequencies w; and ws into
wi = Qe+ v and wy = Q, + /. Clearly, because Q. + €, = Q,, to satisfy w; + wy = w,
V' = —v. Similarly, the conditions for the wavevectors, k= El + /;2, can be written as
k. =k =K, =k, + ko and ky; = —k1, = ¢1. For the o light ray, we have k2, + k2, = k2
with ky = M One finds that ks, = \/m = ky — ’;% Expanding the dependence

of wy in ky to v, we obtain

Q,)$2
by — no(wa)wa _ ()8 | dks ()= K, — L
c c dwo U

where u, is the group velocity for the ordinary ray. Hence to the second order of corrections,



we get

2
v qi
ko, = K, — — — —.
2 u, 2K,
Similarly, for the e light ray, we have ki, + ki, = k% with k; = "(% One finds that
ki, = ki —k} =k — 2}5 The expansion of ky is different from that for ko due to its

angle dependence. Let the spherical angles for /;1 be 0, and ¢;. We have
ne(wi, 0 )wr — ne($2e,0)Qe  dki (2, 0)

Qe dne (9, 0)
k — — — Qe — 0 - 0
! c c * dsl, (1 )+ c do (61 )+
Here "e(Qe—c’g)Qe = K., %ﬂjm is 1/u, with u, being the group velocity for the extraordinary

ray and is given by

dk1(2e,0)  ne(Qe,0) N Qe dn.(, 0)

dSQ, N c c dS,
dne(Qe,0 NoMNe nzfn% sin 0 cos 6 o
Because % = o 81512 9+n£COSQ o = Ne(Qe, O)N(Qe,0), we find N.(9,0)

2

(ne—ng)sinfcosd — Noto that for Ne < Mgy, Ne(Qe,0) < 0. To find 60 = 6; — 0, we note

n2 sin? 6+n2 cos? 0

that for any k., one has (cf. Fig. 2(a))
/%a -OA = cos 0, = cos b cos 1, + sin 0 sin 1), cos @, .

Since sin ¢, = |EL1]/|/Z1] =q./ky < 1and cosyy; = /1 —sin?y; = 1 —1/2sin*¢; +---, to

the second order, we can replace k; by K. and obtain

1%_ . qL
2K 1 + sin 6 {Z—l—---}cos@.

k .OA = cos ] = cos [

On the other hand, cos 6y = cos 6+ 2<28(9; — ) +- - = cos§ —sin§(6; —) +- - - . Comparing

this equation to the equaton for ky - OA, we obtain
1 Qi i qz'
01_9:2[(@2 te—ZCOSle 2ﬁcot0—|—z+---
Putting all together, we find

2

1
klz = Ke + _(Q - Qe) + N6<Qe7 9)%/

o 2K [Ne(€2,0) cot 0 — 1] +

The above equation when combined with the equation of £;, and the relation K, = k. + k.,

we find

J— —_— — —— 7 2
(Q Qe)(ue Uo) + Ne(Qe7 e)qw + q; QKeKo

11 {KO[Ne(Qe,G)cotQ—l]—Ke}_0



Because n, < n,, N.(£2,60) < 0. The above equation can be rewritten in the form

N1 1 1, N?

M |Gy — — Mg =—(Q—Q)(— - — <.

[q QD] FMG = —(@- 00— ) + 1%
Here D = KO[I_NE&%Q’Q:OMHKE > 0. Hence E = —N./2M > 0 (N. < 0) and
L =—-(0— Qe)(% - uLe) + ﬁ; Clearly, the cone axis formed by ks is characterized by

7. We find that the angle between the axis of the cone and 2’ is tan™'(N/ky,), which

is about N/k;, ~ N/K, = —Ko[l_NjgiiéVfwteHKe. The angle of the cone is given by

sin™! X i/M ~ VIL(/M = _(Q_Qe)(i ~- L)+ NZ
2 o Uo Ue

MK, AM2K, "

C.4 0.8pt
Ans: P(a,f) = 3sin*(a + ), P(a,BL) = tcos’(a + B), Plai,B) = icos’(a + ),
P(ay,BL) = %Sinz(a + )
Solution:
For a-photon, let the electric field along the polarizer and perpendicular to the polarization
represented by |a,) and |a,). Here o, and o, are essentially the electric field amplitudes in
appropriate units. The electric fields (the states) along 2’ and ¢ can be written as
|21} = cos afay) — sinalay),
195) = sina|ay) + cos afay).
Similarly, for b-photon, we have
|#,) = cos B]3;) — sin B|By),
|95) = sin B|B;) + cos B|5,).
Hence we obtain
|5)[95) = (cos alag) — sinalay))(sin B]3;) + cos B|5,)),
|Ja)12) = (sin o|a) + cos afayy))(cos B1B,) — sin B]5,)).

The state of the entangled photon pair can be written as

(122)185) + 19a)123))

[(cos asin 8 + sin v cos B)(|a) | Be) — || 5y))
+ (cosacos B —sinasinf)(|aw)|By) — |ay)|Bz))]
= —= [sin(a + B)(|aw)|B:) — |oy)|By)) + cos(a + B)(|aw)|By) — |ay)|B:))]

Sl =Sl

5=



From the above equation, we obtain

P(a,p) = %sirﬁ(a + f),
Play,B1) = %sinQ(a—i—ﬁ),

P, 1) = 5 cos(a+ )

P(ay,B) = %cosz(oz + 0).

C.5 0.5pt
Ans: S =|cos2(a— ) —cos2(a— )| + |cos2(a/ — B) + cos 2(ca/ — [3')]
S = 2v/2. S > 2 indicates that it is not consistent with classical theories.

Solution:

One first realizes that E(«, ) = iggg;iiggigi;;i%ggi;:jggig; Using expressions for P, we
find

E(a, B) = sin*(a + B) — cos*(a + f3)
= (sina cos 3 + cos asin 3)* — (cos a cos B — sin asin 3)?
= —(cos? a — sin® @) (cos® B — sin® 3) + 4 sin asin 3 cos v cos 3

= sin(2«) sin(25) — cos(2a) cos(28) = — cos2(a — f).

Hence S = |cos2(a— 3) —cos 2(a — )| +| cos 2(a’ — B) +-cos 2(a/ — B')|. Fora = §, o' =0,
B=—-5 08 =% wefind S=|~— \% - \%| + \\% + \/L§| = 2v/2 > 2. Hence classical theories

do not apply.
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